Wintertime nitrate formation during haze days in the Guanzhong basin, China: A case study

Tian Feng, Naifang Bei, Shuyu Zhao, Jiarui Wu, Xia Li, Ting Zhang, Junji Cao, Weijian Zhou, Guohui Li

Abstract
In this study, the formation of nitrate aerosol from 16 to 24 December 2015 in the Guanzhong basin, China is simulated using the WRF-Chem model. The predicted near-surface O3, NO2, and fine particulate matters (PM2.5) in the basin and inorganic aerosols and nitrous acid (HONO) in Xi'an are generally in good agreement with the observations. Sensitivity studies show that the heterogeneous HONO sources play an appreciable role in the nitrate formation in the basin, contributing 9.2% of nitrate mass concentrations during heavy haze days. Nitrate formation is also affected by sulfate due to their competition for ammonia, particularly in urban areas. A 50% decrease in SO2 emissions enhances the nitrate concentration by 6.2% during heavy haze days on average in the basin, and a 50% increase in SO2 emission reduces the nitrate concentration by 9.7%. The roles of HONO and sulfate competition in nitrate formation are strongly modulated by ammonia. Agricultural emissions predominate the nitrate level in the basin (93.5%), but the non-agricultural sources cannot substantially influence nitrate formation (3.7%–14.6%). Reducing agricultural emission is an effective control strategy to mitigate nitrate pollution in the basin.

1. Introduction

Atmospheric particulate matter (PM) not only exerts important impacts on air quality (Cao et al., 2012b; Feng et al., 2016b; Seinfeld and Pandis, 2006), visibility (Cao et al., 2012b), and human health (Cao et al., 2012c), but also contributes to global and regional climate change (Y. Wang et al., 2014a, 2014b; R. Zhang et al., 2007). Nitrate aerosol, along with sulfate and ammonium, is an important inorganic component of fine particulate matters (PM2.5) in the atmosphere (Bian et al., 2017; Karydis et al., 2016; Seinfeld and Pandis, 2006).

Generally, nitrate aerosol is formed through the oxidation of nitrogen oxide (NOx = NO + NO2) by oxidants such as hydroxyl radical (OH) and ozone (O3) to produce nitric gas, which then is associated with inorganic cations in the aerosol phase:

\[
\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \quad \text{(R1)}
\]

\[
\text{NO}_2 + \text{OH} + \text{M} \rightarrow \text{HNO}_3 \leftrightarrow \text{nitrate} \quad \text{(R2)}
\]

\[
\text{NO}_2 + \text{O}_3/\text{O}(^3\text{P}) \rightarrow \text{NO}_3 \quad \text{(R3)}
\]

\[
\text{NO}_3 + \text{NO}_2 \rightarrow \text{N}_2\text{O}_5 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 \leftrightarrow \text{nitrate} \quad \text{(R4)}
\]

\[
\text{NO}_3 + \text{HO}_2/\text{HCHO/RCHO/GLY/MGLY} \cdots \rightarrow \text{HNO}_3 \leftrightarrow \text{nitrate} \quad \text{(R5)}
\]

In reaction (R5), HCHO is formaldehyde and RCHO is other aldehydes; GLY and MGLY denote glyoxal and methylglyoxal, respectively. The source of NOx mainly includes anthropogenic emissions from sectors of industry, power plant, and transportation. The nitrate formation is not only determined by the abundance of atmospheric oxidants to convert NOx to HNO3 or N2O5, but also influenced by sulfate aerosol due to its competition for ammonia in the atmosphere (Lei and Wuebbles, 2013; Morgan...
et al., 2010; Poulain et al., 2011; Seinfeld and Pandis, 2006). Nitrate aerosol is typically formed when sulfate aerosol is neutralized and atmospheric ammonia is in excess. Additionally, HNO3 can also interact with mineral cations, including calcium, potassium, sodium, and magnesium, and condense into aerosol phase. Previous studies have shown that mineral cations substantially influence nitrate formation in highly polluted areas (e.g., in Mexico City (Karydis et al., 2011) and on a regional scale (Fairlie et al., 2010; Trump et al., 2015). In addition, the partitioning between gas-phase HNO3 and nitrate is sensitive to air temperature and relative humidity, i.e., lower temperature is more favorable for nitrate formation (Morgan et al., 2010; Morino et al., 2006; Poulain et al., 2011).

The Guanzhong basin is nestled between the Qinling Mountains and the Loess Plateau, and characterized by a warm and humid climate (Fig. 1). Due to rapid industrialization and urbanization, severe air pollution with exceedingly high levels of PM2.5 has frequently engulfed the basin in recent years (e.g. Feng et al., 2016b, 2016a; Shen et al., 2008, 2009), especially during wintertime (Bei et al., 2016a, 2016b; Cao et al., 2012a, 2005). Nitrate aerosol has constituted one of the most important components of PM2.5 in the basin, contributing substantially to the haze formation. Shen et al. (2009) have shown that nitrate aerosol contributes more than 25% of water-soluble ions in PM2.5 during haze days from October 2009 to September 2007 in Xi’an (the largest city in the basin). Wang et al. (2016) have observed that 13–17% of the non-refractory PM2.5 in Xi’an is identified as particle nitrate during the polluted episodes in November – December 2012. Therefore, in order to better understand the haze formation and support the design and implementation of emission control strategies, further studies are imperative to investigate the nitrate formation and sources.

The purpose of the present study is to examine the formation of nitrate aerosol in the Guanzhong basin during a 9-day air pollution episode in December 2015 and to verify its main sources using the WRF-Chem model. The WRF-Chem model and its configuration are described in Sect. 2. The model results and discussion are presented in Sect. 3, and the summary is given in Sect. 4.

2. Model and method

2.1. WRF-Chem model

The WRF-Chem model (v3.5.1) (Fast et al., 2006; Grell et al., 2005) with modifications by Li et al. (2011a; 2010; 2011c) from the Molina Center for Energy and the Environment (MCE2) is used to simulate nitrate formation in the Guanzhong basin. This version employs the CMAQ aerosol module developed by US EPA (Binkowski and Roselle, 2003). The inorganic aerosols are predicted using ISORROPIA Version 1.7 (Nenes et al., 1998). Besides the SO2 gas-phase oxidations by OH and Si, we adopt a SO2 heterogeneous reaction parameterization (G. Li et al., 2017). In the parameterization, the SO2 oxidation in aerosol water by O2 catalyzed by Fe3+ is limited by mass transfer resistances in the gas-phase and gas-particle interface (G. Li et al., 2017). The secondary organic aerosol (SOA) is calculated using a non-traditional SOA module, including the VBS (volatility basis-set) modeling approach and SOA contributions from glyoxal and methylglyoxal (Donahue et al., 2006; Robinson et al., 2007; Tsimpidi et al., 2010). In this module, POA is assumed to be semivolatile and photodecompositively reactive, and a parameterized approach including nine surrogate species with saturation concentrations from 10−10 to 10−3 g m−3 at room temperature is used to represent POA components (Shrivastava et al., 2008). The SOA formation from glyoxal and methylglyoxal is parameterized as a first-order irreversible uptake by aerosol particles with a reactive uptake coefficient of 3.7 × 10−3 (Volkamer et al., 2007; J. Zhao et al., 2006). The HONO heterogeneous sources are parameterized following Li et al. (2010). In the parameterization, HONO is formed from (1) NO2 reaction with surface-bound semi-volatile organics (Gutzwiller et al., 2002), (2) NO2 reaction with freshly emitted soot (Arens et al., 2001), (3) NO2 reactions on ground surfaces and aerosols (Aumont et al., 2003), and (4) photolysis of HNO3 adsorbed on the ground surface (Zhou et al., 2003, 2011). The dry deposition of chemical species is parameterized following Wesely (1989) and the wet deposition is according to the method in the CMAQ module. The photolysis rates are calculated using the FTUV module (G. Li et al., 2005; Tie et al., 2003). The aerosol radiative effect is also considered in the version of the WRF-Chem model, based on the New Goddard radiation scheme (Chou and Suarez, 1999), and the aerosol optical depth, single scattering albedo, and asymmetry factor are calculated using the method in Li et al. (2011b). The model is configured with grid spacing of 6 km × 6 km (150 × 150 grid cells) centered at Xi’an (109.0° E, 34.25° N, Fig. 1b). The meteorological boundary and initial conditions are from NCEP 1° × 1° reanalysis data. The chemical boundary and initial conditions are interpolated from Model for Ozone And Related chemical Tracers (MOZART) 6 h output (Horowitz et al., 2003). Detailed model configurations are listed in Table 1.

A 9-day episode from 16 to 24 December 2015 is selected for the present study, corresponding to a heavy air pollution event in the Guanzhong basin (Fig. 1a, b, and c). During the period, the observed PM2.5 concentration averaged at the monitoring stations in the basin is about 147 μg m−3 and the maximum reaches up to 302 μg m−3. The average temperature and relative humidity at the Jinghe meteorological station (108.97° E, 34.43° N, white dot in Fig. 1b) are 1.5 °C and 56%, respectively, and the average wind speed is around 1.9 m s−1. It is worth noting that only the washout of air pollutants is calculated in the model, and the entire life cycle of aerosols within clouds and precipitation is still not fully considered. Additionally, there is no precipitation occurrence during the study period in the basin. To better simulate the meteorological fields, surface and upper air observational weather data during the study period are assimilated using four-dimensional data assimilation (FDDA) in the model.

The anthropogenic emissions from Zhang et al. (2009), are employed in the simulation. Fig. 1d and e shows the spatial distributions of NOx and SO2 emission rates in the study domain, which highlights strong emissions within the Guanzhong basin (circled by dashed lines in the figure). The emissions of various species within the Guanzhong basin in December 2015 are presented in Table S1. Since the Guanzhong basin is next to the vast Loess Plateau in the north, the emission and transport of mineral dust are considered in the model, based on the GOCART dust module (Ginoux et al., 2001). In addition, long-range transport has been reported to be an important factor for local air pollution in Eastern China (Itahashi et al., 2017; Tang et al., 2016; Wu et al., 2018, 2017; Zheng et al., 2015). However, considering that the Guanzhong basin is situated between the Qinling Mountains and the Loess Plateau and only open to the outside in the east, the basin is generally less influenced by the long-range transport (S. Zhao et al., 2015).

2.2. Pollutant measurements

The hourly near-surface NO2, O3, and PM2.5 mass concentrations released by China’s Ministry of Environmental Protection are downloaded from the website http://www.pm25.cn. In addition, hourly sulfate, nitrate, and ammonium aerosols in PM2.5, and gas-phase HONO at Qujiang Campus, Xi’an Jiaotong University (QJC, XJTU, 109.01° E, 34.23° N, the red dot in Fig. 1b) have been measured during the simulation period using the Gas and Aerosol
Fig. 1. Map showing (a) the location of the study area in China, (b) the topography of the study area, and (c) geographic distributions of ambient air quality monitoring stations (black circles). The dashed line denotes the boundary of the Guanzhong basin represented by the 1000 m contour and the dash-dotted line shows the area of Xi'an. The white and red dots show the locations of the Jinghe meteorological station and Qujiang Campus, XJTU, respectively. (d) and (e) show the spatial distributions of emission rates of nitrogen oxide (NOx) and sulfur dioxide (SO2) in the simulation domain. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Compositions Monitor (IGAC, Fortelice International Co., Taiwan) monitoring system. The method detection limits are lower than 0.12 μg m⁻³ (Tian et al., 2017; Young et al., 2016). The instrument background values for most water-soluble inorganic ions are lower than 0.11 μg m⁻³, except for SO₄²⁻ (1.10 μg m⁻³) (Tian et al., 2017; Young et al., 2016). Further details on IGAC method detection limits can be found in Young et al. (2016).

The mean bias (MB), root mean square error (RMSE), and index of agreement (IOA) are used to evaluate the WRF-Chem model simulations against observations.

\[
MB = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)
\]

\[
RMSE = \left[\frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)^2 \right]^{\frac{1}{2}}
\]

\[
IOA = 1 - \frac{\sum_{i=1}^{N} (P_i - O_i)^2}{\sum_{i=1}^{N} \left(|P_i - O_i| + |O_i - \bar{O}| \right)^2}
\]

where \(P_i\) and \(O_i\) are the simulated and observed variables, respectively. \(N\) is the total number of predictions and \(\bar{O}\) denotes the average of observations. IOA has a theoretical range of 0–1, with 1 suggesting perfect agreement between simulations and observations.

3. Results and discussion

3.1. Model performance

For the discussion convenience, we have defined the base simulation in which the emissions from various sources are considered and the heterogeneous HONO formation mechanism is included (G. Li et al., 2010) (hereafter referred to as the REF case), and results from the REF case are compared to observations in the basin.

3.1.1. Simulations of meteorological fields

Considering the crucial role of meteorological conditions in simulating the spatial distribution and temporal evolution of air pollutants (Bei et al., 2016b, 2012), Figure S2 shows the simulated and observed temporal profile of PM₂.₅ concentrations averaged over the monitoring sites in the basin is shown in Fig. 2a. The observed PM₂.₅ temporal variation distinctly shows a severe haze pollution episode occurred in the basin, including four stages: (1) startup with the slow growth of PM₂.₅ concentrations during 00:00 16–16:00 17 December (local time, hereafter); (2) development with rapid accumulation of PM₂.₅ concentrations during 17:00 17–08:00 21 December; (3) maturation with the PM₂.₅ concentration fluctuation between 200 and 300 μg m⁻³ during 09:00 21–04:00 24 December; and (4) dissipation with very fast falloff of PM₂.₅ concentrations during 05:00–16:00 24 December 2015. The model generally reproduces the haze startup, development, maturation, and dissipation stages, with an IOA of 0.92 for the simulated PM₂.₅ concentration. The model slightly underestimates the PM₂.₅ concentration, with a MB of −8.9 μg m⁻³, and the RMSE is rather large, showing considerable dispersions of the PM₂.₅ simulation. It is worth noting that PM₂.₅ concentrations are considerably underestimated during the maturation stage. Organic aerosols (OA) are one of the most important components of PM₂.₅, constituting around 30% of PM₂.₅ mass in the basin (Huang et al., 2014). During the maturation stage, the simulated OA mass concentration only contributes about 20% of the observed PM₂.₅ concentration averaged at monitoring sites. Therefore, underestimation of OA concentrations might be one of the possible reasons.

3.1.2. Simulations of PM₂.₅, O₃, and NO₂

The simulated and observed temporal profile of PM₂.₅ concentrations averaged over the monitoring sites in the basin is shown in Fig. 2a. The observed PM₂.₅ temporal variation distinctly shows a severe haze pollution episode occurred in the basin, including four stages: (1) startup with the slow growth of PM₂.₅ concentrations during 00:00 16–16:00 17 December (local time, hereafter); (2) development with rapid accumulation of PM₂.₅ concentrations during 17:00 17–08:00 21 December; (3) maturation with the PM₂.₅ concentration fluctuation between 200 and 300 μg m⁻³ during 09:00 21–04:00 24 December; and (4) dissipation with very fast falloff of PM₂.₅ concentrations during 05:00–16:00 24 December 2015. The model generally reproduces the haze startup, development, maturation, and dissipation stages, with an IOA of 0.92 for the simulated PM₂.₅ concentration. The model slightly underestimates the PM₂.₅ concentration, with a MB of −8.9 μg m⁻³, and the RMSE is rather large, showing considerable dispersions of the PM₂.₅ simulation. It is worth noting that PM₂.₅ concentrations are considerably underestimated during the maturation stage. Organic aerosols (OA) are one of the most important components of PM₂.₅, constituting around 30% of PM₂.₅ mass in the basin (Huang et al., 2014). During the maturation stage, the simulated OA mass concentration only contributes about 20% of the observed PM₂.₅ concentration averaged at monitoring sites. Therefore, underestimation of OA concentrations might be one of the possible reasons.
for the bias of the PM2.5 simulation. In addition, long-range transport has been reported to be an important factor for local air pollution in Eastern China (Itahashi et al., 2017; Tang et al., 2016; Wu et al., 2018, 2017; Zheng et al., 2015). However, considering the situation of the Guanzhong basin as discussed in Section 2.1, the basin is generally less influenced by the long-range transport (S. Zhao et al., 2015). The model also performs reasonably in simulating temporal variations of O3 and NO2 concentrations against observations in the basin, with IOAs of 0.85 and 0.89, but considerably underestimates the O3 minimums during the haze nights, which is perhaps caused by the setting of the lower detection limit for O3 observations.

Fig. 3 shows the distributions of predicted and observed near-surface PM2.5 mass concentrations averaged during the startup, development, and maturation stages in the basin. Generally, the predicted PM2.5 spatial evolution is consistent with the observations at monitoring sites in the basin. The observed and simulated PM2.5 concentrations increase from about 35 to 75 μg m⁻³ during the startup stage to 150–400 μg m⁻³ during the maturation stage, indicating the air quality deteriorated from good to severely polluted condition in the basin (Feng et al., 2016a). It is worth noting that the model considerably overestimates the PM2.5 concentrations in the central basin against observations during the startup period (Figs. 2a and 3a). One of the most possible reasons for overestimation is the uncertainty of simulated meteorological fields, which determine the formation, transformation, diffusion, transport, and removal of the air pollutants in the atmosphere (Bei et al., 2017). In addition, Figure S2 shows the simulated PM2.5 and PM10 concentrations due to mineral dust in the study domain, indicating that the PM2.5 concentration from dust is rather low in the basin.

3.1.3. Simulations of sulfate, nitrate, and ammonium aerosols, and HONO

Fig. 4 presents the temporal profiles of simulated and measured mass concentrations of sulfate, nitrate, and ammonium aerosols, and HONO at the QJC site in Xi’an from 16 to 24 January 2016. The temporal variations of simulated inorganic aerosols are generally consistent with the measurements, with IOAs of 0.89–0.96 (Fig. 4a–c). The simulated and observed sulfate concentrations increase from less than 10 to around 90 μg m⁻³ from the startup to maturation stage. The model frequently underestimates sulfate concentration with a MB of −8.6 μg m⁻³, especially during the maturation stage. Besides SO2 emissions and simulated meteorological fields, SO2 oxidation mechanism also plays a key role in the sulfate simulation. Zheng et al. (2015) have proposed that the production rate of sulfate through heterogeneous chemistry can explain the high sulfate concentration during haze episodes. Recent studies have also proposed that the oxidation of SO2 by NO2 on neutral aerosols could interpret the efficient sulfate formation during wintertime haze events (Cheng et al., 2016; L. Li et al., 2018; G. Wang et al., 2016). In northern China, fine particles are moderately acidic with a pH ranging from 3.0 to 4.9 (Liu et al., 2017). These mechanisms are not considered in the simulation, which might constitute a main reason for underestimation of sulfate aerosols in the study.
Fig. 3. Spatial distributions of the simulated (colored shadings) and observed (colored spots) PM$_{2.5}$ concentrations averaged over the (a) startup, (b) development, and (c) maturation episodes in the Guanzhong basin. Levels are PM$_{2.5}$ concentration limits in air quality standards of China MEP.

Fig. 4. Diurnal variations of the simulated (red curves) and observed (black spots) (a) sulfate, (b) nitrate, and (c) ammonium aerosols, and (d) gas-phase HONO concentrations at the QJC site. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Further studies need to be conducted to include the sulfate formation mechanism in the WRF-Chem model to improve the sulfate simulation, associated with possible observed aerosol pH. The simulated sulfate concentration also exhibits large fluctuations, with a RMSE of 14.7 μg m⁻³. On 23 and 24 December, there is a shift between the predicted and observed sulfate aerosols in Fig. 4a. During recent years, the SO₂ emission has been substantially mitigated in Xi’an, so the sulfate aerosol in Xi’an is mainly contributed by the transport from outside of Xi’an. Uncertainties in the simulated wind field, such as biases in the wind speed or direction, can potentially contribute to differences between predicted and observed trace gases and aerosols. During the maturation stage, the observed nitrate concentration fluctuates between 60 and 80 μg m⁻³, close to the sulfate concentration, showing that the nitrate aerosol has become an important contributor of the heavy haze formation. It is worth noting that the NO₂ concentration is generally well reproduced during the maturation period (Fig. 2C), but the nitrate aerosol is underestimated. There are two main possible reasons for the nitrate underestimation. Firstly, this bias is probably caused by the underestimation of oxidants in the atmosphere, e.g., O₃ concentration (Fig. 2B). Secondly, nitrate concentration can be substantially influenced by the presence of mineral aerosols (Gao et al., 2016). Long-range transport of dust from the north (Gobi desert) or the west (Taklimakan desert) has provided high levels of background mineral cations in the basin (Huang et al., 2014). However, this modified version of the WRF-Chem model is still lack of treatment of mineral dust thermodynamics, causing the underestimation of nitrate aerosols. The temporal variation of ammonium is also well predicted compared to measurements, with a MM of 4.2 μg m⁻³ and a RMSE of 8.1 μg m⁻³. During the maturation period, the trend of nitrate aerosols shows a plateau, quite different from sulfate and ammonium aerosols. Considering that SO₂, as the precursor of sulfate aerosols, is mainly emitted from point sources, such as power plants or agglomerated industrial zones, the transport of SO₂ from point sources to the observation site is more sensitive to the wind field simulation uncertainties, causing large fluctuations of simulated sulfate aerosols and further ammonium aerosols. The relatively high HONO concentrations are observed during the episode, ranging from 1 to 4 μg m⁻³ (about 0.5–2 ppb) (Fig. 4d). A recent study has reported that the measured HONO level is about 0.02–4.3 ppb, with an average of 1.12 ppb from 24 July to 6 August 2015 in Xi’an (Huang et al., 2017). The model tracks the observed temporal variation of the HONO concentration at the QJC site, with an IOA of 0.68, but model bias is still rather large.

It is worth noting that the simulated temporal variations of inorganic aerosols and HONO concentrations frequently exhibit rather large fluctuations against measurements at the QJC site. One of the most possible reasons is that the QJC site is located at the periphery of Xi’an. The uncertainties in simulated wind fields substantially influence the transport of the pollution plume formed in the urban area of Xi’an, causing the large variability of simulated inorganic aerosols and HONO concentrations (Be et al., 2017).

3.2. Sensitivity studies

3.2.1. Role of HONO

HONO becomes a key precursor of the hydroxyl radical when the O₃ level is low in the atmosphere (G. Li et al., 2010). During wintertime, fairly low O₃ concentrations have been observed in the Guanzhong basin, particularly during heavy haze episodes (G. Li et al., 2017). Hence, a sensitivity study is performed to verify contributions of the heterogeneous HONO source to the nitrate formation in the basin, in which the heterogeneous HONO source is excluded in the simulation (hereafter referred to as HONO#0). Fig. 5 presents the spatial distributions of the change of average nitrate and PM₂.₅ mass concentrations during the maturation episode (defined as HONO#0 – REF). In most areas of the basin, the heterogeneous HONO source contributes at least 6 μg m⁻³ of the nitrate and more than 15 μg m⁻³ of the PM₂.₅ concentrations. On average, when the heterogeneous HONO source is not considered in simulations, the nitrate and PM₂.₅ concentrations are decreased by 9.2% (4.6 μg m⁻³) and 8.3% (15.1 μg m⁻³) during the maturation episode in the basin, respectively, showing that the HONO source plays an appreciable role in the nitrate and PM₂.₅ formation during the haze pollution. Previous studies have shown that heterogeneous HONO sources enhance secondary aerosol formation, such as SOA and nitrate, and further PM₂.₅ concentrations in Mexico City (G. Li et al., 2010) and North China Plain (An et al., 2012; Y. Li et al., 2011). It is worth noting that the contribution of the heterogeneous HONO source to nitrate and PM₂.₅ is apparently less in urban Xi’an, which is mainly due to the deficiency of ammonia (NH₃) therein.

3.2.2. Impacts of sulfate competition

Since September 2013, stringent control strategies have been implemented in China to mitigate pollutant emissions, particularly with regard to SO₂, and previous studies have shown substantial decrease of SO₂ concentration in Xi’an in recent years (G. Li et al., 2017). Considering sulfate competition with nitrate for ammonium in the atmosphere (Lei and Wuebbles, 2013; Seinfeld and Pandis, 2006), the decrease or increase of the sulfate formation potentially affects the nitrate level. Therefore, two sensitivity studies are devised, in which the sulfate precursor, SO₂ emission is increased and decreased by 50% in simulations (hereafter referred to as SO₂#1.5 and SO₂#0.5), respectively.

Fig. 6 shows the spatial distributions of the change of average nitrate and PM₂.₅ mass concentrations when the SO₂ emission is increased and decreased by 50% during the maturation episode (defined as (SO₂#1.5 – REF) and (SO₂#0.5 – REF), respectively). When the SO₂ emission is decreased by 50%, indicating less sulfate formation to compete with nitrate for ammonia, the nitrate concentration is enhanced by 2–4 μg m⁻³ in the east part of the basin and almost 0 in the west part. The most remarkable enhancement occurs in the urban areas of Xi’an (up to 10 μg m⁻³). Such results imply that there is sufficient ammonia in the west part of the basin and less in the east part, which have potentials to, in part, balance both sulfate and nitrate aerosols under the current emission situation. But ammonia competition exists in Xi’an and sulfate and nitrate concentrations are fairly high, indicative of insufficient ammonia. The deduced spatial pattern of ammonia is accordant with the distribution of farmland which serves as the most important ammonia source in the basin. As expected, when the SO₂ emission is increased by 50%, the spatial decrease of nitrate is similar, i.e., almost 0 in the west part of the basin, higher in the east part, and remarkable in Xi’an. Overall, when the SO₂ emission is decreased or increased by 50%, on average during the maturation episode in the basin, the nitrate concentration is enhanced by 6.2% or reduced by 9.7%, and the PM₂.₅ concentrations are reduced by 4.7% or enhanced by 3.2%, indicating that mitigation of SO₂ emissions is still an effective strategy to improve the local air quality.

3.2.3. Contributions of various anthropogenic sources

Five sensitivity studies are conducted to explore the nitrate contribution of various anthropogenic sources, in which the agricultural, industrial, power plant, residential living, or transportation source is excluded individually (hereafter referred to as AGRO#, IND40, IND100, RES40, and TRAN100). An additional sensitivity study with half anthropogenic emissions is also performed to investigate the overall effect of the emission reduction on the nitrate formation (hereafter referred to as AN#0.5).
Fig. 7 presents the average mass concentration changes in the sensitivity studies compared to the REF case during the maturation period in the basin. Agricultural emission (NH₃) plays an essential role in nitrate formation in the basin, as suggested by previous studies (Pozzer et al., 2017); when the agricultural emission is not included in the model, the nitrate concentration is reduced by 93.5% (46.8 mg/m³), and the PM₂.₅ concentration is also decreased by 43.9% (80.4 mg/m³). The residential source constitutes the second most important nitrate contributor, accounting for about 14.6% of nitrate concentrations in the basin, followed by industry (8.5%), transportation (6.2%), and power plant (3.7%) source. Hence, reducing agricultural emission is the key for the mitigation of nitrate aerosol pollution in the basin. When the total anthropogenic emissions are decreased by 50%, the average nitrate level in Xi’an is...
Nitrate formation is complicated, depending on the atmospheric oxidation capability (AOC) and the concentrations of NO2, sulfate, and ammonia in the atmosphere. Excluding one of the five sources decreases the level of NOx, volatile organic compounds (VOCs), and SO2. Decrease of VOCs concentrations generally lowers O3 production in Xi’an (Feng et al., 2016b), but during wintertime, NOx decrease is apt to increase O3 concentration due to the weakened titration effect when the O3 photochemical production is slow caused by fairly weak insolation, particularly during haze days (Table 2). Although the HONO concentration is lowered due to NO2 decrease, the O3 increase compensates the AOC loss due to the HONO decrease or even enhance the AOC. Additionally, decrease of SO2 emissions also reduce the sulfate formation to make more ammonia available, facilitating the nitrate formation. The complex formation process of nitrate aerosol poses a dilemma for the mitigation of nitrate pollution when reducing non-agricultural emissions.

Fig. 7b shows that the agricultural and residential emissions dominate the haze pollution in the basin, and exclusion of the sources decreases the PM2.5 concentration by about 43.9% and 46.7%, respectively. The industry source contributes about 12.2% of the average PM2.5 concentration, but the increase PM2.5 contribution of the power plant and transportation source is not significant, making up 5.6% and 4.5% of the average PM2.5 concentration, respectively. Hence, stringent control strategies should be implemented to mitigate emissions from the agricultural and residential emissions to improve the air quality in the Guanzhong basin.

4. Summary and conclusions

In this study, a 9-day episode from 16 to 24 December 2015 corresponding to a severe haze pollution episode is simulated using the WRF-Chem model to investigate the wintertime nitrate formation in the Guanzhong basin, China. Surface and upper air observational weather data during the study period are assimilated using the FDDA method to better simulate meteorological fields.

Generally, the version of the WRF-Chem model used in this study performs reasonably well in simulating the temporal variations of PM2.5, O3, and NO2 mass concentrations and the PM2.5 spatial distributions compared to observations at the monitoring sites. The temporal variations of inorganic aerosols and HONO concentrations are also reasonably reproduced against the measurements by the IGAC system at the QIC site.

Sensitivity studies show that the heterogeneous HONO source plays an appreciable role in the nitrate formation in the Guanzhong basin, with a contribution of 9.2% (4.6 μg m^-2) on average during the severely polluted episode. The sulfate formation also influences the nitrate level due to competition for the ammonia in the atmosphere. With a 50% decrease or increase in the SO2 emission, the average nitrate concentration in the basin is increased by 6.2% or decreased by 9.7%. The roles of HONO and sulfate competition in nitrate formation are both strongly modulated by the abundance of ammonia in the basin. Among the anthropogenic sources, agricultural emission predominates the nitrate formation in the basin, but none of the rest 4 sources significantly affect nitrate formation due to its complicated formation process. Model results suggest that reducing agricultural emissions is an efficient control strategy to alleviate nitrate pollution in the basin, but mitigation of the non-agricultural sources cannot substantially decrease nitrate formation.

Although the WRF-Chem model reasonably captures the temporal variations or spatial distributions of air pollutants, inorganic aerosol species and HONO compared to observations in the basin, the model biases still exit, particularly for the HONO simulation. Future studies need to be conducted to improve the WRF-Chem model simulations, considering the rapid changes in anthropogenic emissions since the implementation of the Air Pollution Prevention and Control Action Plan in 2013 and uncertainties in the meteorological fields simulations. The oxidation of SO2 by NO2 on neutral aerosols and impacts of mineral cations on nitrate formation should be included in the WRF-Chem model. In addition, the HONO formation parameterization needs to be improved in the model and sufficient measurements of the species associated with HONO are needed so that such a parameterization can be evaluated.

Acknowledgements

We thank Dr. Jianjun Li and Dr. Can Wu for providing the information of the IGAC instrument. This work was supported by the National Key R&D Plan (Quantitative Relationship and Regulation Principle between Regional Oxidation Capacity of Atmosphere and Air Quality (2017YFC021000)) and National Natural Science Foundation of China (no. 41703127, 41430424, 4166114402). We also thank the editor and three anonymous reviewers for their comments which are very helpful for improving the paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envpol.2018.09.069.