

Environmental Modeling

Subscriber access provided by Kaohsiung Medical University

PM2.5 Source Apportionment Using a Hybrid Environmental Receptor Model

L.-W. Antony Chen, and Jun-ji Cao

Environ. Sci. Technol., Just Accepted Manuscript • Publication Date (Web): 03 May 2018

Downloaded from http://pubs.acs.org on May 4, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 PM_{2.5} Source Apportionment Using a Hybrid Environmental

2 **Receptor Model**

3

4 L.-W. Antony Chen^{†,*} and Junji Cao[‡]

- ⁵ [†]Department of Environmental and Occupational Health, School of Community Health Sciences,
- 6 University of Nevada, Las Vegas, NV, 89154, USA
- ⁷ [‡]Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment,
- 8 Chinese Academy of Sciences, Xi'an 710061, China
- 9 *Corresponding author: <u>antony.chen@unlv.edu</u>, 1(702)895-1420
- 10
- 11

Abstract

A Hybrid Environmental Receptor Model (HERM) that unifies the theory of effective-variance 12 13 chemical mass balance (EV-CMB) and positive matrix factorization (PMF) models was developed to support the weight-of-evidence approach of air pollution source apportionment. 14 The HERM software is capable of 1) conducting EV-CMB analysis for multiple samples in a 15 single iteration; 2) calculating EV-CMB and PMF source contributions as well as middle 16 grounds (hybrid mode) between the two using partial source information available for the study 17 region; 3) reporting source contribution uncertainties and sample-/species-specific fitting 18 performance measures; 4) interfacing with MS Excel[®] for convenient data inputs/outputs and 19 analysis. Initial testing with simulated and real-world PM_{2.5} (fine particulate air pollutants with 20 21 aerodynamic diameter $< 2.5 \mu m$) datasets show that HERM reproduces EV-CMB results from existing software but with more tolerance to collinearity and better uncertainty estimates. It also 22

- shows that partial source information helps reduce rotational ambiguity in PMF, thus producing
- 24 more accurate partitioning between highly correlated sources. Moreover, source profiles
- 25 generated from the hybrid mode can be more representative of the study region than those
- acquired from other studies or calculated by PMF with no source information. Strategies to use
- 27 HERM for source apportionment are recommended in the paper.

28 Keywords

29 Receptor model, chemical mass balance, PMF, PM_{2.5} source apportionment

31 INTRODUCTION

Receptor models have been widely used for source apportionment of particulate and gaseous air pollutants, allowing control efforts to be focused on sources that contribute most to the environmental and health effects.¹⁻⁵ In principle the speciation of pollutants at a receptor site reflects the emissions of individual sources and their chemical compositions, also known as source profiles. The most general form of chemical mass balance (CMB) model that links source profiles to ambient chemical composition considers the atmospheric transport and transformation,⁶⁻⁷ thus:

39
$$C_{ik} = \sum_{j} (T_{ijk} F_{ij}) (D_{jk} Q_{jk})$$
 (1)

40 where

41 C_{jk} : the measured concentration of a pollutant *i* at sample *k*

42 Q_{jk} : the total emission from source *j* corresponding to the sample *k*

43 D_{ik} : the fraction of emissions arriving at the receptor site due to atmospheric transport

44 F_{ij} : the source profile, i.e., fractional quantity of pollutant *i* in source *j* emission

45 T_{ijk} : describe how the source profiles evolve/transformation during the transport

46 In an ideal situation where F_{ij} are measured accurately and comprehensively for the region of

47 interest and where atmospheric transformation is negligible $(T_{ijk} \sim 1)$ or can be simulated

48 adequately, Eq. (1) is simplified to:

49
$$C_{ik} = \sum_{j=1}^{J} F_{ij} S_{jk}$$
 (2)

where *J* indicates the number of sources that impact the receptor site and the source contribution S_{jk} (equal to $D_{jk}Q_{jk}$) can be quantified from measured C_{ik} and F_{ij} by non-weighted linear regression, providing that number of species is more than the number of sources in the model.

53 The effective variance (EV) regression⁸ takes into account uncertainties in both C_{ik} and F_{ij}

resulting from either measurement or variability in source emissions. EV-CMB solves for S_{jk} (*j* = 1 to *J* for sample *k*) that minimize the reduced chi-square:

56
$$\chi_k^2 = \frac{1}{I-J} \sum_{i=1}^{J} \frac{\left(C_{ik} - \sum_{j=1}^{J} F_{ij} S_{jk}\right)^2}{\sigma_{C_{ik}}^2 + \sum_{j=1}^{J} \sigma_{F_{ij}}^2 S_{jk}^2}$$
 (3)

where $\sigma_{C_{ik}}$ and $\sigma_{F_{ij}}$ are uncertainties of the measured concentrations and profile abundances, respectively. *I* and *J* are the number of species and sources, respectively; *I* - *J* that precedes the summation accounts for the degree of freedom (DF) in the model. EV refers to the denominator in Eq. (3), thus:

61
$$EV_{ik} = \sigma_{C_{ik}}^2 + \sum_{j=1}^J \sigma_{F_{ij}}^2 S_{jk}^2$$
 (4)

Watson et al.⁸ developed an iterative algorithm, later adopted by the EPA CMB software,⁹⁻¹¹ to 62 solve Eq. (3). This algorithm works on one sample at a time, starting with the solution of ordinary 63 weighted linear regression (in that case $EV_{ik} = \sigma_{C_k}^2$ only) for initial S_{jk} , updating EV at each 64 iteration based on new S_{jk} , and continuing until S_{jk} is converged. The final χ_k^2 suggests the 65 goodness of fit. There is no non-negative constraint in the algorithm, though the EPA CMB 66 software enables a "source elimination mode" that automatically removes sources with negative 67 contribution and recalculates S_{ik}. In addition, convergence may not be achieved if highly collinear 68 69 source profiles are included in the model.

The development of Multi-Linear Engine (ME-2)¹² offers an alternative to solve Eq. (3). ME2 uses an iterative conjugate gradient algorithm to approach a local and/or global minimum for

any defined multilinear problems such as CMB. It can handle multiple samples by expanding thedefinition of reduced chi-square in Eq. (3) to:

74
$$\chi^{2} = \frac{1}{K(I-J)} \sum_{k=1}^{K} \sum_{i=1}^{I} \frac{\left(C_{ik} - \sum_{j=1}^{J} F_{ij} S_{jk}\right)^{2}}{EV_{ik}}$$
(5)

ME-2 solves S_{jk} for all sources (j = 1 to J) and all samples (k = 1 to K, where K is the number of samples) simultaneously. Note DF in the model increases to K(I - J). Theoretically Eq. (5) is equivalent to Eq. (3) since S_{jk} that minimize every χ_k^2 defined in Eq. (3) must also minimize the overall χ^2 in Eq. (5). Nonnegativity constraints have been implemented in ME-2 and so source contributions can only be zero or above. As we will show, the conjugate gradient algorithm tolerates collinearity better than the conventional EV regression in EPA CMB software. It produces solutions even when EPA CMB fails to converge.

- Assuming no uncertainty associated with any F_{ij} (i.e., $\sigma_{F_{ij}} = 0$), Eq. (5) would be reduced to
- that implemented by the positive matrix factorization (PMF) model, thus:

84
$$\chi^{2} = \frac{1}{K(I-J) - IJ} \sum_{k=1}^{K} \sum_{i=1}^{I} \frac{\left(C_{ik} - \sum_{j=1}^{J} F_{ij} S_{jk}\right)^{2}}{\sigma_{C_{ik}}^{2}} = \frac{1}{KI - J(K+I)} \sum_{k=1}^{K} \sum_{i=1}^{I} \frac{\left(C_{ik} - \sum_{j=1}^{J} F_{ij} S_{jk}\right)^{2}}{\sigma_{C_{ik}}^{2}}$$
(6)

PMF, a factor analysis model, gains popularity in the last two decades for PM and volatile organic compounds (VOCs) source apportionment.¹³ It is typically applied to CMB problems where appropriate source profiles are not available, let alone source profile uncertainties, due to the lack of source testing data and/or substantial atmospheric modification of primary emissions. The model seeks F_{ij} and S_{jk} that minimize χ^2 in Eq. (6) simultaneously. Since all F_{ij} are unspecified, DF in the model is reduced by $I \times J$ from Eq. (5) to Eq. (6). PMF relies on variability in chemical composition across ambient samples and therefore work best for a large dataset (i.e., many C_{ik}) with highly variable source contributions. The popular EPA PMF 5.0 software employs ME-2 to solve Eq. (6).¹⁴ The main issue with PMF is the rotational ambiguity, i.e., F_{ij} and S_{jk} matrixes can be rotated in opposite direction to yield new solutions. This often leads to non-unique solutions despite the nonnegativity constrains on both F_{ij} and S_{jk} , and some of the solutions may not even be physically possible. Although PMF calculations do not involve source profiles explicitly, the resulting "factors" are often interpreted based on how they compare with known source profiles.¹⁵⁻¹⁷

Source apportionment by EV-CMB and PMF has been compared in recent studies for 99 rural¹⁷⁻¹⁹, urban^{20,21}, and industrial²²⁻²⁴ environments. While they both quantify major source 100 contributions, biases between the two are often attributed to CMB profiles being representative of 101 "fresh" source emissions ignoring transformation or "aging" between the source and receptor. 102 103 Although PMF factors better capture the aging process, they inevitably mix sources together. Moreover, EV-CMB more likely resolves minor sources^{17,18,23}, and its performance is best with 104 locally-measured source profiles^{22,24}. One major shortage of these studies is the lack of using 105 simulated datasets to evaluate the absolute accuracy of the models. On the other hand, Shi et al.²⁵ 106 used simulated data to evaluate the EV-CMB performance under serious collinearity conditions. 107 This paper describes the development and evaluation of a Hybrid Environmental Receptor 108 Model (HERM), which is built upon the ME-2 solution to EV-CMB problems (Eq. [5]). HERM 109 differs from the current CMB software (i.e., EPA CMB v8.2) in the ability to analyze one or 110 multiple samples in a single iteration, inherent non-negativity constraints, and better tolerance to 111 collinearity. Most important of all, HERM bridges EV-CMB to PMF by allowing the use of 112 incomplete or partial source profiles. In many situations, the lack of high-quality source profile(s) 113 for every known source hinders successful CMB source apportionment. A few studies attempted 114

to incorporate source information into PMF or ME-2 by constraining ratios of marker species in 115 the factors.^{26,27} HERM can take all reliable source profile information while estimating unknown 116 sources and/or missing species in the source profiles. This feature also helps characterize "aged" 117 source profiles when they vary substantially from source testing results (i.e., the "fresh" source 118 profiles). When no source profiles are used, HERM would return to the PMF configuration (Eq. 119 [6]) to calculate factor profiles and contributions. Virtually the model is capable of reporting 120 both EV-CMB and PMF source apportionment, as well as any middle ground between the two. 121 The current Chinese Academy of Sciences (CAS) HERM software comes with a Microsoft 122 Excel[®] user interface to facilitate data input, output, and analysis. Simulated particulate matter 123 (PM) data were generated to evaluate the HERM performance with different degrees of source 124 information. Moreover, the model was applied to a real-world PM dataset previously analyzed by 125 126 EV-CMB to offer additional insights into the receptor modeling process.

127

128 TECHNICAL APPROACHES

129 Algorithms

The ME-2 Basic_2way (B2W) script was modified to accommodate HERM requirements. B2W solves the PMF problem assuming all F_{ij} and S_{jk} are unknown and to be solved. The model inputs include ambient measurements C_{ik} , uncertainty $\sigma_{C_{ik}}$, and the number of factors *J*. In addition to the CMB equation (Eq. [2]), B2W implements a normalization scheme that constrains the average source contribution, $\sum_{k=1}^{K} S_{jk} / K$, to 1 for each factor *j*, thus limiting the number of possible solutions. The modifications to B2W include the following: Select the non-robust mode to calculate χ^2 , as robust mode automatically downweight

137	apparent outliers ¹² and so would not be consistent with EV-CMB calculations. The HERM
138	software allows easy switch between the robust and non-robust mode.
139	• Read source profiles into the model, with the number of profiles no more than J. Lock F_{ij} that
140	correspond to the profiles (i.e., fix them to the initial values throughout iteration). Assign a
141	priori (or random) values to non-locked F and all S elements to begin the first iteration.
142	• Read profile uncertainties ($\sigma_{F_{ij}}$) into the model for calculating EV. Assume zero $\sigma_{F_{ij}}$ for any
143	non-specified or non-locked F_{ij} .
144	• Remove the auxiliary equations that normalize the average of S_{jk} (over all samples) to unity,
145	considering that F_{ij} are locked.
146	• Replace error $\sigma_{C_{ik}}^2$ with EV_{ik} (Eq. [4]) and update it at every iteration of conjugate gradient
147	calculation using S_{jk} from the previous iteration until the convergence is reached. Final values
148	of S_{jk} is reported as source contribution estimates.
149	In the case of conventional EV-CMB problem where each factor is assigned a full source
150	profile (i.e., all F_{ij} are locked), HERM reports χ_k^2 and χ^2 as defined in Eqs. (3)-(5), along with
151	source contribution S_{jk} . Uncertainty (i.e., standard deviation $\sigma_{S_{jk}}$) of S_{jk} is then estimated by:
152	$\sigma_{Sjk}^{2} = (F'(dEV_{k})^{-1}F)_{jj}^{-1} \times \chi_{k}^{2} $ (7)
153	where <i>F</i> is the <i>I</i> × <i>J</i> profile matrix and dEV_k is an <i>I</i> × <i>I</i> diagonal matrix with diagonal elements
154	$(dEV_k)_{ii} = EV_{ik}$. Eq. (7) takes into account both the EV and goodness of fit, ²⁸ though EPA CMB
155	ignores the latter $(\chi_k^2)^{10,11}$ A larger χ_k^2 indicates worse fit and certainly larger uncertainty in the
156	source contribution estimate. The sample-specific correlation of fitting (r_k^2) is also calculated: ¹¹

157
$$r_k^2 = 1 - \frac{(I-J)\chi_k^2}{\sum_{i=1}^{I} \frac{C_{ik}^2}{EV_{ik}}}$$
 (8)

Higher r_k^2 and lower χ_k^2 generally suggest the particular sample is fitted better by the model. In addition, HERM calculates species-specific χ_i^2 and r_i^2 , where:

160
$$\chi_i^2 = \frac{I}{K(I-J)} \sum_{k=1}^{K} \frac{\left(C_{ik} - \sum_{j=1}^{J} F_{ij} S_{jk}\right)^2}{EV_{ik}}$$
 (9)

161
$$r_i^2 = 1 - \frac{K(I-J)\chi_i^2}{I \times \left(\sum_{k=1}^{K} \frac{C_{ik}}{EV_{ik}}\right)}$$
 (10)

162 χ_i^2 and r_i^2 help diagnosis of the results, e.g., identifying species that are not fitted as well (high 163 χ_i^2 and low r_i^2) across all samples. They are not reported by the current EPA CMB software. 164 If HERM needs to solve profiles that are not assigned a priori and/or some species that are

missing in the profiles (i.e., the "hybrid" or PMF mode), EV_{ik} is generalized to:

166
$$EV_{ik}^* = \sigma_{C_{ik}}^2 + \sum_{j=1}^{J} (\sigma_{F_{ij}}^2 S_{jk}^2 + \beta \delta_{ij} \sigma_{C_{ik}}^2)$$
 (11)

Here $\delta_{ij} = 0$ if source profile element F_{ij} is specified and $\delta_{ij} = 1$ when F_{ij} is unknown or missing in the profiles, thus setting $\sigma_{F_{ij}}$ to zero. β is an adjustable factor with a default value of 1. The last term in Eq. (11) avoids the model to overweight unspecified profile species in the fitting process due to a zero uncertainty. Missing (unlocked) F_{ij} also decrease DF in the model, and therefore definitions of χ^2 , χ^2_k , and χ^2_i should be modified accordingly. For the hybrid mode,

172
$$\chi^{*2} = \frac{1}{K(I-J) - \sum_{i=1}^{I} \sum_{j=1}^{J} \delta_{ij}} \sum_{k=1}^{K} \sum_{i=1}^{I} \frac{\left(C_{ik} - \sum_{j=1}^{J} F_{ij} S_{jk}\right)^{2}}{EV_{ik}^{*}}$$
 (12)

is used in the calculation, instead of Eq. (5) for the EV-CMB mode. Eq. (12) returns to Eq. (5)

when all F_{ij} are locked ($\delta_{ij} = 0$), and it becomes the PMF formulation when no profile information is used ($\sigma_{F_{ij}} = 0, \delta_{ij} = 1$); in that case,

176
$$\chi^{*2} = \frac{1}{1+\beta J} \chi^2$$
 (13)

177 where χ^2 is that defined in Eq. (6). Other generalized formulas are listed in the supporting 178 information Table S1.

179

180 User Interface

The current CAS HERM v1.8 software takes inputs in Microsoft Excel[®] format. Each input 181 file should contain 6 tabs: 1) speciated ambient measurements (C_{ik}) ; 2) speciated measurement 182 uncertainties ($\sigma_{C_{ik}}$); 3) source profiles (F_{ij}); 4) source profile uncertainties ($\sigma_{F_{ij}}$); 5) source 183 profile specifications (keys); and 6) other model parameters, all of which are organized in matrix 184 form (see supporting information Figure S1 for an example). $\sigma_{C_{ik}}$ is determined from the 185 measurement precision (%) and minimal detection limit (MDL) of each species²⁹, with examples 186 shown in Table S2, while $\sigma_{F_{ii}}$ also takes into account the standard deviation of the averaged 187 abundances from multiple source testings^{30,31}. Typically the first species in ambient 188 189 measurements and in source profiles is the normalization (total) species, such as PM mass or total VOCs concentration. The software allows users to specify profile keys corresponding to specific 190 F_{ii} to be either "locked" (EV-CMB mode) or "non-locked" (hybrid/PMF mode). Species will be 191

fitted whether they are locked or not. To exclude a species from fitting, one can remove the 192 species from the ambient measurements or assign it a relatively large uncertainty so it contributes 193 little to χ^2 . It should be noted that typically EV-CMB does not fit the total species, and instead 194 compares it with that reconstructed from the solution to inform the model performance (e.g., 195 "%mass" in EPA CMB v8.2, see Coulter¹¹). Other parameters in CAS HERM include the number 196 of species (I), samples (K), and sources (J, specified plus unspecified), as well as a seed for the 197 random numbers and the number of repeated runs with different seeds. 198 199 CAS HERM passes the input to ME-2, which starts iteration with initial profiles, if specified, 200 or random values. Upon convergence, ME-2 passes the final source profiles and contributions to CAS HERM, along with χ^2 for each run. Further CAS HERM calculates sample-specific χ^2_k , r^2_k , 201 and $\sigma_{S_{jk}}$, as well as species-specific χ_i^2 and r_i^2 . A scatter plot of measured versus calculated 202 concentrations for each species is presented, along with the breakdown of source contributions to 203 that species. Due to the numerical nature of ME-2, repeated runs can yield different results, and 204 the users can select to report one (e.g, with the lowest χ^2) or multiple run results for further 205 analysis. All CAS HERM outputs are also in MS Excel® format with different information 206 displayed in different tabs. Input information is included in the output file to facilitate data 207 management, comparison, and interpretation. 208 209 The current CAS HERM does not contain error estimation tools such as bootstrapping (BS) or

displacement of factor elements (DISP) that are implemented in the EPA PMF 5.0^{14} software.

211 These tools aim at quantifying uncertainties in factor profiles resolved by PMF due partly to

noises and rotational ambiguity and could help evaluate the robustness of model solutions,

especially if HERM is required to address unknown and/or incomplete source profiles. They will

be integrated into future versions. Meanwhile, repeated runs (typically 10-20, with random initial

values) in CAS HERM provide a clue for the model robustness and the solution with the lowest χ^2 is used in the following discussions.

217

218 Simulated and Ambient Test Datasets

Simulated $PM_{2.5}$ (fine PM with aerodynamic diameter < 2.5 µm) data were generated from 5 219 real-world source profiles, including a secondary ammonium sulfate (AMSUL), a secondary 220 ammonium nitrate (AMNIT), a biomass burning (BB), a motor vehicle exhaust (MV), and an 221 urban dust (U-Dust) profiles, used in the Reno PM_{2.5} source apportionment study.³² Each profile 222 consists of water-soluble ions (NO₃⁻, SO₄⁻, NH₄⁺, Na⁺, K⁺), organic carbon (OC), elemental 223 carbon (EC), and thermal/optical carbon fractions as quantified by the IMPROVE A protocol,³³ 224 elements (Al to Pb), levoglucosan, as well as selected polycyclic aromatic hydrocarbons (PAHs), 225 hopanes, and alkanes, for a total of 44 species that are normalized to the PM2.5 mass (see 226 supporting information Table S2). For each sample, source profiles were perturbed stochastically 227 from the defined means (F_{ij}) and standard deviations ($\sigma_{F_{ij}}$) of the 5 sources. They were then 228 multiplied by pre-specified S_{ik} (0 – 10 µg/m³ of PM_{2.5} for AMNIT and BB, and 0 – 5 µg/m³ of 229 PM_{2.5} for AMSUL, MV and U-Dust) to determine the speciated PM_{2.5} concentrations at the 230 receptor site (Eq. [2]), which were finally perturbed to simulate "would-be" measured values, C_{ik} , 231 according to the defined measurement uncertainties ($\sigma_{C_{ik}}$). Therefore, the simulated C_{ik} reflect 232 both the source variability and measurement errors. 233 Two sets of simulated data, each of which contained 50 samples, were developed to challenge 234 the receptor models. The first set (Scenario A) assumed correlations between the AMNIT and BB 235 contributions ($r^2 = 0.5$) and between the MV and U-Dust contributions ($r^2 = 0.8$), a real-world 236 situation as found by Chen et al.³². There were no correlations ($r^2 < 0.1$) between any other pairs 237

Environmental Science & Technology

of sources. For the other set of data (Scenario B), AMNIT was replaced by a road dust source (R-Dust) that had a varying degree of collinearity with U-Dust. The R-Dust source profile, i.e., $F_{i,R}$.

241
$$F_{i,R-Dust} = \alpha \times F_{i,U-Dust} + (1-\alpha) \times F_{i,Brake}$$
(14)

where $F_{i,Brake}$ is the source profile of brake wear³⁴ with high iron (Fe) and manganese (Mn) contents, and α determines the degree of collinearity ranging from 0 (no collinearity) to 1 (full collinearity). It should be noted that collinearity also depends on C_{ik} , the receptor data to be fitted.³⁵ The R-Dust profile uncertainty, $\sigma_{F_{i,R-Dust}}$, was calculated following the rule of error propagation. No correlations were assumed for any pairs of source contributions in this scenario. Scenario B therefore was based on AMSUL, BB, MV, U-Dust, and a range of R-Dust, while the other principles for constructing ambient C_{ik} remained the same as Scenario A.

Ambient PM_{2.5} data acquired from the Bliss State Park (BSP), California, and previously 249 analyzed for source apportionment¹⁸ served to further test the receptor models. BSP, located in 250 251 the scenic Lake Tahoe Basin, is part of the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network designed to track the long-term trends of visibility in U.S. 252 national parks and wildlife reserves.^{36,37} The site is impacted by local sources, particularly wood 253 burning in nearby communities and wildlands and traffic from tourists, as well as long-range 254 255 transport of natural and anthropogenic pollutants. The IMPROVE network quantifies only inorganic species, including mass, NO_3^- , SO_4^- , H^+ , OC, EC, and 21 elements, on an every 3^{rd} day 256 basis. Based on EPA PMF and EV-CMB models, Green et al.¹⁸ attributed PM_{2.5} during 2005– 257 258 2009 to 9 sources, i.e., AMSUL, AMNIT, wood burning with both high and low combustion efficiencies (BBh and BBl), motor vehicles (MV), two road dusts (RDust1 and RDust2), Asian 259 260 dust (ADust), and miscellaneous coal combustion (Coal), with the wood burning emissions

dominating throughout the year. Source profiles used for EV-CMB (Table S3) differed

262	appreciably from those resolved by PMF. ¹⁸ Although these source apportionment results satisfied
263	general receptor modeling guidelines, ^{38,39} there was a discrepancy between the measured and
264	EV-CMB-calculated PM _{2.5} mass. This discrepancy might result from some source profiles being
265	unrepresentative. Particularly, the wood burning profiles that were acquired near the burns
266	represented fresh smoke better than aged smoke that actually impacted the BSP site. ⁴⁰
267	
268	RESULTS
269	Consistency of HERM with EPA CMB
270	HERM and EPA CMB was first applied to the simulated "Scenario A" dataset using known
271	source profiles (i.e., all profiles are "locked"). Both models calculated S_{jk} and $\sigma_{S_{jk}}$ for the 50
272	samples based on EV-CMB, and they are compared with actual source contributions in Table 1.
273	All 50 HERM and EPA CMB iterations converged and no sources were eliminated due to
274	negative contribution. HERM reproduced the exact EPA CMB results with respect to source
275	contribution S_{jk} ($r^2 = 1$, with the same means for corresponding sources). The minor differences,
276	much smaller than the calculated source contribution uncertainty $\sigma_{S_{jk}}$, are attributed to the
277	numerical precision of calculations, resulting in residual-to-uncertainty ratios (R/U ratios, model-
278	versus-model) that are << 1 (Table 1). Source apportionment by HERM (or EPA CMB) captures
279	the variations of actual source contributions well ($r^2 > 0.96$) and on average deviates from the true
280	breakdowns by <2%. R/U ratios calculated from the difference in actual and modeled S_{jk} as well
281	as modeled $\sigma_{s_{jk}}$ for individual samples are distributed roughly around unity, suggesting a
282	reasonable estimate of source contribution uncertainties. However, the median R/U ratio (actual-
283	versus-model) is 0.92 and 0.71 for HERM and EPA CMB, respectively, compared to the expected 14

value of 1 (see supporting information Figure S2).

The eligible space dimension, i.e., the maximum number of sources that are estimable in the EV-CMB model, according to Henry⁴¹ and calculated by EPA CMB¹¹ is always 5 (Table S4). Estimable sources have a contribution uncertainty <20% of PM_{2.5} concentration (a predefined threshold), and when all the sources are estimable, as in this case, it corroborates no collinearity among the source profiles.

Table 2 shows the comparison for "Scenario B" with a varying degree of collinearity between U-Dust and R-Dust. For median-to-high collinearity, the eligible space dimension is reduced from 5 to 4 (Table S4), confirming similarity between at least two source profiles in the model. U-Dust and R-Dust are classified as inestimable (collinear) sources as they have small projections (<0.95) within the eligible space.⁴¹ This means uncertainties associated with the U-Dust and R-Dust contributions would be above the threshold.

HERM reproduced EPA CMB results in the cases of low and median collinearity, though for 296 some samples (3 in the low collinearity and 26 in the median collinearity case) U-Dust or R-Dust 297 298 was eliminated by EPA CMB due to negative contributions. HERM attributed zero contributions to all the sources eliminated by EPA CMB and provided uncertainty estimates. For the three non-299 collinear sources, AMSUL, BB, and MV, both HERM and EPA CMB yielded expected source 300 contributions. EPA CMB, however, appears to overestimate the source contribution uncertainty, 301 as most of the actual-versus-model R/U ratios it reports are less than 0.5. HERM reports smaller, 302 and more reasonable, uncertainties. Source apportionment between the two collinear sources, U-303 Dust and R-Dust, are not as accurate, as r^2 decreases to 0.7 - 0.9 and 0.2 - 0.3 in the low and 304 median collinearity case, respectively, when compared with the actual source contributions (Table 305 2). The discrepancy is also reflected in the relatively large source contribution uncertainties from 306

HERM. Even in the median collinearity case, the median R/U ratio (actual-versus-model) for the
two collinear sources remains at 0.83 from HERM, much closer to 1 in comparison with 0.40
from EPA CMB.

When collinearity is even higher, HERM starts to report source contributions that deviate 310 from those of EPA CMB, and EPA CMB starts to report non-convergence in which no source 311 contribution would be determined (see the high collinearity case in Table 2). Both HERM and 312 EPA CMB fail to partition contributions from collinear sources, though HERM continues to 313 report source contributions and uncertainties for all the samples, yielding a median actual-versus-314 315 model R/U ratio of 0.33 (or 0.24 for the two collinear sources). In practice, large uncertainties (i.e., σ_{s_k}) alert users the potential collinearity in the model. The R/U ratio distributions in this 316 case show that EPA CMB overestimates source contribution uncertainties more than HERM for 317 the 3 non-collinear sources but underestimates source contribution uncertainties severely for the 318 319 two collinear sources causing most R/U ratios > 2.5. HERM was applied to 226 BSP samples acquired 2008-2009, using the same 9 source profiles 320 combination as prior EPA CMB analysis (Table 3). This leads to an overall χ^2 of 1.8 (χ^2_k : 0.46 – 321 20; r_k^2 : 0.43 – 0.98). The 9 sources explained 87% of measured PM_{2.5}. EPA CMB reported 12 322 non-convergent samples and eliminated a number of sources due to negative contributions. The 323 eligible space dimension ranges from 6 to 9 (Table S4), and so collinearity does occur in some of 324 325 the samples. Specifically, BBh and ADust have the most small projections in the eligible space, likely due to their collinearity with BBl and RDust2, respectively. 326 Other than the non-convergent samples and a few exceptions (with R/U ratio > 0.5, model-327 328 versus-model), HERM reproduced the EPA CMB source apportionment for the BSP dataset (Table 3). The exceptions for AMSUL, MV, and Coal are attributed to a single outlier 329

330	(5/16/2009), which also explains the low correlation ($r^2 = 0.43$) between the HERM- and EPA
331	CMB-calculated Coal combustion contributions. Removing the outlier improves r^2 to 1.0 (see
332	Figure S2). The 5/16/2009 sample features the highest calcium (Ca) concentration in the dataset
333	that may introduce collinearity between the Coal and Asian dust source profiles, both of which
334	contains an elevated Ca fraction (6.5% for Coal and 4.0% for Asian dust). In fact, collinearity
335	resulted in one of the three dust sources being eliminated by EPA CMB for many samples.
336	HERM avoided non-convergence and reported source contributions for every sample. It also
337	shows relatively large uncertainties associated with the road dust contributions (Figure S4).
338	A scatter plot of χ_i^2 versus r_i^2 is used to evaluate HERM's fitting performance (Figure 1).
339	Most of the species in the simulated Scenario A dataset are fitted well with $r_i^2 > 0.95$ taking into
340	account the effective variance (Eq. [10]). Exceptions include 10 elements and 2 organic markers
341	(Figure 1a). However, none of the species show $\chi_i^2 > 1$, suggesting that they contribute little to
342	the overall χ^2 due to relatively large uncertainty (i.e., low signal-to-noise ratio) of the species in
343	the source profiles, ambient measurements, or both. In the case of real-world BSP dataset,
344	however, a few species that are not fitted well by the current HERM 9-source model, such as Zn,
345	Ni, Pb and Br show $r_i^2 < 0.8$ and $\chi_i^2 >> 1$ (Figure 1b). There are therefore "real" discrepancies
346	between the measured and modeled concentrations. This alerts users that different source profiles
347	and/or additional sources may be needed in the model to explain variations of these species.
348	
349	Application of HERM for unknown sources

In real-world applications, representative source profiles may not be available for all the sources that contribute to ambient PM_{2.5}, and HERM is better run in the hybrid mode. For our

352	Scenario A, AMSUL and AMNIT are hypothetical profiles for secondary ammonium salts
353	formed in the atmosphere and U-Dust can be acquired for regions of interest at a relatively low
354	cost through resuspension. ^{30,42} On the other hand, MV and BB source profiles likely result from
355	other studies and deviate from the actual emissions that impact the receptor site. It is logical to
356	specify only AMSUL, AMNIT, and U-Dust in the source apportionment by HERM, and let the
357	model calculate other source profiles. The first trials include the three specified source profiles
358	(and their uncertainties) as well as 0 to 4 unspecified source profiles, for a total of $3 - 7$ sources
359	in the HERM analysis. Figure 2 shows that χ^2 decreases substantially from 3 to 5 sources and
360	levels off thereafter. This indicates that 5 sources sufficiently explain the variability in the
361	dataset, as expected. In practice, such tests alerts users to focus on a 5-source model.
362	Four different conditions were examined under a 5-source model: 1) 3 sources specified
363	(AMSUL, AMNIT, and U-Dust); 2) 4 sources specified (AMSUL, AMNIT, MV, and U-Dust);
364	3) no sources specified; and 4) no sources specified by EPA PMF 5.0 (Table 4). HERM was used
365	for the first 3 conditions. When missing only the BB profile, HERM was able to report source
366	contribution estimates as accurate as HERM or EPA CMB using all 5 source profiles ($r^2 > 0.97$,
367	with χ^2 of 0.12 and a median actual-versus-model R/U ratio of 1.1). When the MV profile was
368	also removed, the model still predicted BB well but underestimated the U-Dust contribution
369	significantly ($r^2 = 0.54$). The R/U ratios, particularly for U-Dust, increased substantially leading
370	to a median value of 2.2 (9.2 for U-Dust). Therefore, the discrepancy, resulted from the strong
371	correlation between the MV and U-Dust contributions, is not captured in the source contribution
372	uncertainty estimates. A few crustal elements (e.g., Al, Si, Ca, and Fe) are mixed into the
373	calculated MV source profile (Figure S5); this confirms the challenge for receptor model to
374	separate correlated sources without specific source profiles.

375 The two conditions without any source profile inputs generally failed to yield accurate source contribution estimates (Table 4). EPA PMF underestimated BB and U-Dust contributions while 376 overestimating the others for which the actual and modeled source contributions remain highly 377 correlated ($r^2 > 0.93$). The HERM source apportionment differ from that of EPA PMF, likely due 378 to different ME-2 settings (e.g., nonrobust versus robust). Other causes of the difference are 379 explained in Kim and Hopke⁴³. All corresponding source contributions between the two models 380 show strong correlations ($r^2 > 0.91$), and the median model-versus-model R/U ratio is 2.0, lower 381 than their median actual-versus-model R/U ratios (HERM: 6.6; EPA PMF: 6.0). Generally, they 382 agree with each other better than with the actual source contributions. 383

384

385 Improvement of source apportionment with HERM

386 Source apportionment results can usually be improved with additional information that serve as constraints to a receptor model. Even if the full source profile is unavailable, it is possible to 387 introduce to the prior knowledge that MV (tailpipe) emissions contain little crustal elements, 388 such as silicon (Si) and Ca, into the HERM modeling. This was done by specifying an 389 incomplete source profile with only two zero elements (Si and Ca), along with three full source 390 profiles (AMSUL, AMNIT, and U-Dust), in the HERM input file to establish a 5-source model 391 for the Scenario A dataset (Table 5). The resulting MV and U-Dust contributions agree with 392 actual values better ($r^2 > 0.98$) than those acquired previously using only the three full source 393 profiles. The median actual-versus-model R/U ratio drops from 2.2 to 1.3 while the overall χ^2 394 increases little from 0.093 to 0.12. HERM also closely reproduces the expected MV source 395 profile (Figure S5). This example illustrates how additional source information help separate 396 397 correlated sources.

In the previous BSP PM_{2.5} source apportionment, the road and Asian dust source profiles 398 were developed locally¹⁸ and, along with AMSUL and AMNIT, can be representative of 399 corresponding sources or atmospheric processes. The MV profile that is a composite from 400 dynamometer testing⁴⁴ should represent tailpipe emissions of a modern fleet (low-emitting 401 gasoline vehicles). On the other hand, the BB and Coal profiles are more uncertain. Wildfire 402 smoke impacts BSP from time to time, for which source profile may substantially differ from 403 BBh and BBl acquired from a much smaller scale laboratory combustion.⁴⁵ Since there are not 404 industrial sources in the Lake Tahoe Basin, the "Coal" contributions must originate from long-405 406 range transport and chemically resemble mixed industrial emissions. Figure 3 shows the dependence of χ^2 on the number of sources when the first 4 sources (AMSUL, AMNIT, 407 RDust2, ADust) are specified in HERM. Though it is not as obvious as Figure 2, the trend 408 409 suggests 6 or 7 sources to be the most appropriate. Thus the three least contributing sources in Table 3, i.e., BBh, RDust1, and/or Coal, may be merged with other sources. 410 The 6- and 7-source models were constructed by HERM (Table 6), and these models all 411 appeared robust as χ^2 varied little in repeated runs. Based on correlations with the prior model 412 results, the two additional sources in the 6-source model were identified as BB ($r^2 = 0.97$) and 413 MV ($r^2 = 080$). However, industrial markers such as As, Br, Pb, Se, Zn, and S show higher than 414 415 expected fractions in the derived "MV" profile, suggesting its coupling with mixed industrial emissions (noted by "MV + Ind." in Table 6). A 7-source model with 3 unspecified sources 416 could not separate them, possibly due to some correlation and/or collinearity between the two. 417 When adding the default MV profile in the model input (i.e., 5 specified plus 2 unspecified 418 sources), however, HERM was able to separate motor vehicle and industrial contributions. Table 419 6 compares source apportionment by the HERM 6-source (4+2), HERM 7-source (5+2), and EV-420

421	CMB 9-source (from Table 3) models. For the 4 pre-specified sources and calculated BB, the
422	HERM 6- and 7-source models estimate essentially the same contributions considering the
423	reported uncertainty (median R/U ratio < 0.2). With the input of MV source profile, the 7-source
424	model distinguishes the MV contribution while achieving a better fit (i.e., lower χ^2). Unlike
425	EV-CMB which underestimates $PM_{2.5}$ mass, both HERM models explain $PM_{2.5}$ mass within 2%
426	by allowing part of the profiles to vary. The hybrid models attribute more mass to BB and
427	transported industrial emissions but less mass to AMSUL and MV. Particularly, MV fraction in
428	$PM_{2.5}$ is >11% by EV-CMB and only 2% by the HERM hybrid 7-source model. A concurrent
429	emission inventory ⁴⁶ supports the latter as basinwide onroad vehicles and recreational boats
430	account for $<2\%$ the primary PM _{2.5} emission. Unrepresentative biomass burning and industrial
431	source profiles may have caused EV-CMB to overestimate the MV contribution.
432	The derived BB source profile is similar to BBI where OC, EC, and K dominate (Figure S6)
433	but with higher EC/OC (0.12 vs. 0.047) and lower K/OC ratios (0.011 versus 0.014). Sulfur is
434	the most enriched species in both the derived industrial and Coal source profiles (Figure S6),
435	though the Se/S ratio differs significantly between the two (0.00052 vs. 0.016). A low ratio
436	typically means substantial aging, and one should note that the ambient Se/S ratio never
437	exceeded 0.001 and averaged only 0.00014 over the entire period. Moreover, industrial elements
438	including Br, Zn, and Pb are more enriched in the derived industrial than in the measured Coal
439	source profile; this results in them being fitted better (higher r_i^2 and lower χ_i^2) by the hybrid 7-
440	source model (Figure 4) than by EV-CMB with 9 sources (Figure 1), at a small cost to the K and
441	Se fittings. The fitting for Ni and EC also improves. In general, the hybrid model explains well
442	the variations of species in the BSP dataset.

466

DISCUSSION AND RECOMMENDATION

Receptor model is an important tool for air quality management. Since none of the 445 modeling approaches is without biases or uncertainties, a weight-of-evidence (WOE) approach 446 that takes into account multiple model results is strongly recommended in practice.^{19,23,24,39} This 447 paper introduces the hybrid environmental receptor model (HERM) that can perform EV-CMB 448 and PMF, two most popular receptor models for PM_{2.5} source apportionment, using a unified 449 algorithm and evaluates it with simulated and real-world datasets. In the EV-CMB mode, where 450 all source profiles/uncertainties are specified, HERM is shown to yield source attributions nearly 451 identical to EPA CMB v8.2 but with 1) more tolerance to collinearity and 2) better estimate of 452 source contribution uncertainty even when collinearity occurs. In the PMF mode where no 453 source information is used, HERM and EPA PMF 5.0 source contributions are highly correlated 454 455 but not the same due to different modeling preferences (e.g., non-robust versus robust). HERM allows a hybrid mode that takes partial source information such as incomplete 456 source profiles to pursue a middle ground between EV-CMB and PMF. This is particularly 457 458 useful since the inclusion of only reliable source profiles in the model avoids poor fitting in EV-CMB while reducing the rotational degree of freedom in PMF analysis. HERM implements the 459 constraints differently from EPA PMF in that it uses source profile uncertainties explicitly in the 460 effective variance fitting. Preliminary tests show that partial information improves source 461 apportionment. It could help separate sources of which contributions are highly correlated thus 462 presenting a major challenge to PMF. It also calculates source profiles that are more 463 representative of the study region than profiles acquired from somewhere else. 464 More tests are warranted to determine how the best performance of HERM may be 465

22

achieved with different datasets and also how the robust mode, if implemented, will alter the

source apportionment in the EV-CMB or hybrid mode. The convenience of the model's user 467 interface will facilitate the investigation, as it allows all input and output parameters in a single 468 MS Excel® file for easier data processing and comparison. In addition to source contribution and 469 uncertainty values, HERM calculates reduced chi² (χ^2) to inform users the overall goodness of 470 fit, χ_k^2 and r_k^2 to assess sample-specific fits, and χ_i^2 and r_i^2 to assess species-specific fits. This 471 472 helps identify outliers for potential removal from the model. When practicing receptor modeling, users are recommended to first determine the possible number(s) of sources (\mathcal{J}) by examining the 473 dependence of χ^2 on J. HERM in different modes (EV-CMB, hybrid, and PMF) using non-474 robust and robust calculations should be carried out with their results compared and reconciled to 475 476 support the WOE approach of source apportionment.

477

478 ACKNOWLEDGEMENT

This project was supported by a joint venture (#2015003P) between Institute of Earth
Environment, Chinese Academy of Sciences and University of Nevada, Las Vegas. Additional
support was provided by the National Research Program for Key Issues in Air Pollution Control.
The authors thank Dr. Shally Pang at Xi'an University of Posts & Telecommunications for
assisting the software development. Comments from three anonymous reviewers are highly
appreciated.

485

486 Supporting Information

487 Figures showing the model interface and various performance measures for source

488 contribution/profile estimates, and tables documenting model formulation, source profiles used in

this study as well as a collinearity diagnosis for these source profiles.

490 **REFERENCES**

- Watson, J.G., Chow, J.C. and Fujita, E.M., Review of volatile organic compound source
 apportionment by chemical mass balance. *Atmos. Environ.* 2001, *35*(9), 1567-1584.
- 493 2. Cao, J.J., Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K.K.,
- 494 Watson, J.G., Zhu, C.S. and Liu, S.X., Characterization and source apportionment of
- 495 atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an,
- 496 China. Atmos. Chem. Phys. 2005, 5(11), 3127-3137.
- 497 3. Sarnat, J.A., Marmur, A., Klein, M., Kim, E., Russell, A.G., Sarnat, S.E., Mulholland,
- 498 J.A., Hopke, P.K. and Tolbert, P.E., Fine particle sources and cardiorespiratory
- 499 morbidity: an application of chemical mass balance and factor analytical source-
- apportionment methods. *Environ. Health Persp.* **2008**, *116*(4), 459-466.
- Viana, M., Kuhlbusch, T.A.J., Querol, X., Alastuey, A., Harrison, R.M., Hopke, P.K.,
 Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A.S.H. and Hueglin, C., Source
- apportionment of particulate matter in Europe: A review of methods and results. J. *Aerosol Sci.* 2008, 39(10), 827-849.
- 505 5. Huang, R.J., Zhang, Y., Bozzetti, C., Ho, K.F., Cao, J.J., Han, Y., Daellenbach, K.R.,
- 506 Slowik, J.G., Platt, S.M., Canonaco, F. and Zotter, P., High secondary aerosol
- 507 contribution to particulate pollution during haze events in China. *Nature*
- **2014**, *514*(7521), 218-222.
- Henry, R.C., Lewis, C.W., Hopke, P.K. and Williamson, H.J., Review of receptor model
 fundamentals. *Atmos. Environ. (1967)* 1984, *18*(8), 1507-1515.
- 7. Watson, J.G., Chen, L.-W.A., Chow, J.C., Doraiswamy, P. and Lowenthal, D.H., Source
 apportionment: findings from the US supersites program. *J. Air Waste Manage. Assoc.*2008, 58(2), 265-288.
- 8. Watson, J.G., Cooper, J.A. and Huntzicker, J.J., The effective variance weighting for
 least squares calculations applied to the mass balance receptor model. *Atmos. Environ.*(1967) 1984, 18(7), 1347-1355.
- 517 9. Watson, J.G., Robinson, N.F., Chow, J.C., Henry, R.C., Kim, B.M., Pace, T.G., Meyer,
- 518 E.L. and Nguyen, Q., The USEPA/DRI chemical mass balance receptor model, CMB 7.0.
- 519 *Environ. Softw.* **1990**, *5*(1), 38-49.
- 520 10. Watson, J.G., Robinson, N.F., Lewis, C., Coulter, T., Chow, J.C., Fujita, E.M.,

521		Lowenthal, D.H., Conner, T.L., Henry, R.C. and Willis, R.D., Chemical mass balance
522		receptor model version 8 (CMB8) user's manual. Prepared for US Environmental
523		Protection Agency, Research Triangle Park, NC, by Desert Research Institute, Reno, NV,
524		1997.
525	11.	Coulter C.T., EPA-CMB8.2 Users Manual. Prepared for the Office of Air Quality
526		Planning & Standards (OAQPS), U.S. Environmental Protection Agency, Research
527		Triangle Park, NC. EPA-452/R-04-011, 2004.
528	12.	Paatero, P., The multilinear engine-a table-driven, least squares program for solving
529		multilinear problems, including the n-way parallel factor analysis model. J. Comput.
530		Graph. Stat. 1999, 8(4), 854-888.
531	13.	Hopke, P.K., Review of receptor modeling methods for source apportionment. J. Air
532		Waste Manage. Assoc. 2016, 66(3), 237-259.
533	14.	Norris, G.A., Duvall, R., Brown, S.G. and Bai, S., EPA Positive Matrix Factorization
534		(PMF) 5.0 fundamentals and User Guide. Prepared for the US Environmental Protection
535		Agency Office of Research and Development, Washington, DC. EPA/600/R-14/108,
536		2014.
537	15.	Reff, A., Eberly, S.I. and Bhave, P.V., Receptor modeling of ambient particulate matter
538		data using positive matrix factorization: review of existing methods. J. Air Waste
539		Manage. Assoc. 2007, 57(2), 146-154.
540	16.	Chen, LW.A., Watson, J.G., Chow, J.C. and Magliano, K.L., Quantifying PM _{2.5} source
541		contributions for the San Joaquin Valley with multivariate receptor models. Environ. Sci.
542		Tech. 2007, 41(8), 2818-2826.
543	17.	Chen, LW.A., Watson, J.G., Chow, J.C., DuBois, D.W. and Herschberger, L., PM _{2.5}
544		source apportionment: reconciling receptor models for US nonurban and urban long-term
545		networks. J. Air Waste Manage. Assoc. 2011, 61(11), 1204-1217.
546	18.	Green, M.C., Chen, LW.A., DuBois, D.W. and Molenar, J.V., Fine particulate matter
547		and visibility in the Lake Tahoe Basin: Chemical characterization, trends, and source
548		apportionment. J. Air Waste Manage. Assoc. 2012, 62(8), 953-965.
549	19.	Lee, S., Liu, W., Wang, Y., Russell, A.G. and Edgerton, E.S., Source apportionment of
550		PM _{2.5} : Comparing PMF and CMB results for four ambient monitoring sites in the
551		southeastern United States. Atmos. Environ. 2008, 42(18), 4126-4137.

552	20.	Favez, O., Haddad, I.E., Piot, C., Boréave, A., Abidi, E., Marchand, N., Jaffrezo, J.L.,
553		Besombes, J.L., Personnaz, M.B., Sciare, J. and Wortham, H., Inter-comparison of source
554		apportionment models for the estimation of wood burning aerosols during wintertime in
555		an Alpine city (Grenoble, France). Atmos. Chem. Phys. 2010, 10(12), 5295-5314.
556	21.	Song, Y., Dai, W., Shao, M., Liu, Y., Lu, S., Kuster, W. and Goldan, P., Comparison of
557		receptor models for source apportionment of volatile organic compounds in Beijing,
558		China. Environ. Pollut. 2008, 156(1), 174-183.
559	22.	Cesari, D., Donateo, A., Conte, M. and Contini, D., Inter-comparison of source
560		apportionment of PM_{10} using PMF and CMB in three sites nearby an industrial area in
561		central Italy. Atmos. Res. 2016, 182, 282-293.
562	23.	Viana, M., Pandolfi, M., Minguillón, M.C., Querol, X., Alastuey, A., Monfort, E. and
563		Celades, I., Inter-comparison of receptor models for PM source apportionment: case
564		study in an industrial area. Atmos. Environ. 2008, 42(16), 3820-3832.
565	24.	Taiwo, A.M., Harrison, R.M. and Shi, Z., A review of receptor modelling of industrially
566		emitted particulate matter. Atmos. Environ. 2014, 97, 109-120.
567	25.	Shi, G.L., Feng, Y.C., Zeng, F., Li, X., Zhang, Y.F., Wang, Y.Q. and Zhu, T., Use of a
568		nonnegative constrained principal component regression chemical mass balance model to
569		study the contributions of nearly collinear sources. Environ. Sci. Tech. 2009, 43(23),
570		8867-8873.
571	26.	Liu, G.R., Shi, G.L., Tian, Y.Z., Wang, Y.N., Zhang, C.Y. and Feng, Y.C., Physically
572		constrained source apportionment (PCSA) for polycyclic aromatic hydrocarbon using the
573		Multilinear Engine 2-species ratios (ME2-SR) method. Sci. Total Environ. 2015, 502, 16-
574		21.
575	27.	Sofowote, U.M., Su, Y., Dabek-Zlotorzynska, E., Rastogi, A.K., Brook, J. and Hopke,
576		P.K., Sources and temporal variations of constrained PMF factors obtained from
577		multiple-year receptor modeling of ambient $PM_{2.5}$ data from five speciation sites in
578		Ontario, Canada. Atmos. Environ. 2015, 108, 140-150.
579	28.	Shi, G.L., Zhou, X.Y., Feng, Y.C., Tian, Y.Z., Liu, G.R., Zheng, M., Zhou, Y. and
580		Zhang, Y.H., An improved estimate of uncertainty for source contribution from effective
581		variance Chemical Mass Balance (EV-CMB) analysis. Atmos. Environ. 2015, 100, 154-
582		158.
		26

583	29.	Chen, LW.A., Watson, J.G., Chow, J.C., DuBois, D.W. and Herschberger, L., Chemical
584		mass balance source apportionment for combined $PM_{2.5}$ measurements from US non-
585		urban and urban long-term networks. Atmos. Environ. 2010, 44(38), 4908-4918.
586	30.	Chow, J.C., Watson, J.G., Ashbaugh, L.L. and Magliano, K.L., Similarities and
587		differences in PM_{10} chemical source profiles for geological dust from the San Joaquin
588		Valley, California. Atmos. Environ. 2003, 37(9), 1317-1340.
589	31.	Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl,
590		S.D., Engelbrecht, J.P. and Green, M.C., Source profiles for industrial, mobile, and area
591		sources in the Big Bend Regional Aerosol Visibility and Observational
592		study. Chemosphere 2004, 54(2), 185-208.
593	32.	Chen, LW.A., Watson, J.G., Chow, J.C., Green, M.C., Inouye, D. and Dick, K.,
594		Wintertime particulate pollution episodes in an urban valley of the Western US: a case
595		study. Atmos. Chem. Phys. 2012, 12(21), 10051-10064.
596	33.	Chow, J.C., Watson, J.G., Chen, LW.A., Chang, M.O., Robinson, N.F., Trimble, D. and
597		Kohl, S., The IMPROVE_A temperature protocol for thermal/optical carbon analysis:
598		maintaining consistency with a long-term database. J. Air Waste Manage. Assoc.
599		2007 , <i>57</i> (9), 1014-1023.
600	34.	Chow, J.C., Watson, J.G., Chen, LW.A. and Divita, F., Contemporary inorganic and
601		organic speciated particulate matter source profiles for geological material, motor
602		vehicles, vegetative burning, industrial boilers, and residential cooking. Prepared for
603		Pechan and Associates, Inc., Springfield, VA, by Desert Research Institute, Reno, NV,
604		2006.
605	35.	Lowenthal, D.H., Chow, J.C., Watson, J.G., Neuroth, G.R., Robbins, R.B., Shafritz, B.P.
606		and Countess, R.J., The effects of collinearity on the ability to determine aerosol
607		contributions from diesel-and gasoline-powered vehicles using the chemical mass
608		balance model. Atmos. Environ. A-Gen. 1992, 26(13), 2341-2351.
609	36.	Murphy, D.M., Chow, J.C., Leibensperger, E.M., Malm, W.C., Pitchford, M., Schichtel,
610		B.A., Watson, J.G. and White, W.H., Decreases in elemental carbon and fine particle
611		mass in the United States. Atmos. Chem. Phys. 2011, 11(10), 4679-4686.
612	37.	Chen, LW.A., Chow, J.C., Watson, J.G. and Schichtel, B.A., Consistency of long-term
613		elemental carbon trends from thermal and optical measurements in the IMPROVE

network. Atmos. Meas. Tech. 2012, 5(10), 2329-2338.

615	38.	Watson, J.G., Zhu, T., Chow, J.C., Engelbrecht, J., Fujita, E.M. and Wilson, W.E.,
616		Receptor modeling application framework for particle source
617		apportionment. Chemosphere 2002, 49(9), 093-1136.
618	39.	Watson, J.G., Chow, J.C., Chen, LW.A., Engling, G. and Wang, X.L., Source
619		apportionment: principles and methods. In Airborne Particulate Matter (Ed. Roy
620		Harrison, pp. 72-125). Royal Society of Chemistry, 2016.
621	40.	Malamakal, T., Chen, LW.A., Wang, X., Green, M.C., Gronstal, S., Chow, J.C. and
622		Watson, J.G., Prescribed burn smoke impact in the Lake Tahoe Basin: model simulation
623		and field verification. Int. J. Environ. Pollut. 2013, 52(3-4), 225-243.
624	41.	Henry, R.C., Dealing with near collinearity in chemical mass balance receptor
625		models. Atmos. Environ. A-Gen. 1992, 26(5), 933-938.
626	42.	Chow, J.C., Watson, J.G., Houck, J.E., Pritchett, L.C., Rogers, C.F., Frazier, C.A.,
627		Egami, R.T. and Ball, B.M., A laboratory resuspension chamber to measure fugitive dust
628		size distributions and chemical compositions. Atmos. Environ. 1994, 28(21), 3463-3481.
629	43.	Kim, E. and Hopke, P.K., Source identifications of airborne fine particles using positive
630		matrix factorization and US environmental protection agency positive matrix
631		factorization. J. Air Waste Manage. Assoc. 2007, 57(7), 811-819.
632	44.	Fujita, E.M., Zielinska, B., Campbell, D.E., Arnott, W.P., Sagebiel, J.C., Mazzoleni, L.,
633		Chow, J.C., Gabele, P.A., Crews, W., Snow, R. and Clark, N.N., Variations in speciated
634		emissions from spark-ignition and compression-ignition motor vehicles in California's
635		south coast air basin. J. Air Waste Manage. Assoc. 2007, 57(6), 705-720.
636	45.	Chen, L.W., Verburg, P., Shackelford, A., Zhu, D., Susfalk, R., Chow, J.C. and Watson,
637		J.G., Moisture effects on carbon and nitrogen emission from burning of wildland
638		biomass. Atmos. Chem. Phys. 2010, 10(14), 6617-6625.
639	46.	Kuhns, H.D., Chang, M.C.O., Chow, J.C., Etyemezian, V., Chen, L.W.A., Nussbaum,
640		N.J., Nathagoundenpalayam, S.K., Trimble, T.C., Kohl, S.D., MacLaren, M. and Abu-
641		Allaban, M., DRI Lake Tahoe source characterization study. Prepared for California Air
642		Resources Board, Sacramento, CA, by Desert Research Institute, Reno, NV, 2004.
643		
644		

(a)

Figure 1. HERM fitting performance examined by species-specific residual (χ_i^2) and correlation coefficient (r_i^2) for the (a) simulated Scenario A (b) BSP dataset (EV-CMB mode, see Table 1 and 3). Species noted in blue show relatively extreme χ_i^2 and/or r_i^2 .

Figure 2. HERM fitting performance for the Scenario A dataset examined by the overall residual (χ^2) as a function of the total number of sources and number of sources specified in the model.

AMSUL, AMNIT, and U-Dust are among the 3 sources specified. Additionally, MV is included

in the "4 or 5 sources specified" and BB is included in the "5 sources specified".

Figure 3. HERM fitting performance for the BSP (2008-2009) dataset examined by the overall residual (χ^2) as a function of the total number of sources when 4 sources, AMSUL, AMNIT,

662 RDust2, and ADust, have been specified.

Figure 4. HERM fitting performance examined by species-specific residual (χ_i^2) and correlation coefficient (r_i^2) for the BSP 2008-2009 dataset (hybrid 7-source model, see Table 6). Species

667 noted in blue show relatively extreme χ_i^2 and/or r_i^2 .

668 Table 1. Source apportionment of simulated PM_{2.5} speciation dataset (Scenario A) by CAS HERM and EPA CMB, compared with the

669 actual source contributions.

	Samples	Mean	Contribu (µg m ⁻³)	ribution [*] Correlation (r ²)				R/U Ratio [†] (<0.5/0.5-1.5/1.5-2.5/>2.5)												Sou Elimin	rce ated [‡]	Noncon- vergence [@]	
Source(s)	#	Actual	HERM	СМВ	x vs y	x vs z	y vs z	x vs y			x vs z				y vs z				HERM	CMB	HERM	CMB	
		(x)	(y)	(z)																			
AMSUL	50	2.591	2.599	2.599	0.983	0.983	1.000	19	21	7	3	24	20	4	2	50	0	0	0	0	0	0	0
AMNIT	50	4.817	4.757	4.757	0.988	0.988	1.000	12	20	11	7	19	23	7	1	50	0	0	0	0	0	0	0
BB	50	4.866	4.777	4.777	0.963	0.963	1.000	17	19	12	2	16	16	10	8	50	0	0	0	0	0	0	0
MV	50	2.423	2.459	2.460	0.979	0.980	1.000	23	22	4	1	17	18	6	9	50	0	0	0	0	0	0	0
U-Dust	50	2.330	2.313	2.314	0.983	0.983	1.000	12	17	11	10	21	25	3	1	50	0	0	0	0	0	0	0
Sum		17.026	16.906	16.906		HERM: $x^2 = 0.182$																	

^{*}Actual source contribution (S_{jk}) and those derived by HERM and EPA CMB models are noted as x, y, and z, respectively. Mean values take into

671 account all available data.

[†]Residue-Uncertainty (R/U) ratio of x and y is calculated by $|y-x|/\sigma_y$ where σ_y is the source contribution uncertainty estimated by HERM. The

ratios are then categorized into 4 ranges: <0.5, 0.5-1.5, 1.5-2.5, and >2.5 with numbers in each range shown in the table. Similarly, R/U ratio of x

and z is calculated by $|z-x|/\sigma_z$ where σ_z is the source contribution uncertainty estimated by EPA CMB. R/U ratio of y and z is calculated by $|y-z|/\sigma_z = \frac{1}{2} \frac{1}{2$

675 $z|/(\sigma_y^2 + \sigma_z^2)^{\frac{1}{2}}$.

^{*}Number of source eliminated due to negative source contribution. When occurring, no uncertainty estimate is provided by EPA CMB.

⁶⁷⁷ ^{Number of non-convergence due to collinearity. When occurring, no uncertainty estimate is provided by HERM or EPA CMB.}

- **Table 2.** Source apportionment of simulated PM_{2.5} speciation dataset (Scenario B) by CAS HERM and EPA CMB, compared with the
- 680 actual source contributions.

	Samples	Mean	Contrib (µg m ⁻³)	ution [*]	Cor	relation	R/U Ratio [†] (<0.5/0.5-1.5/1.5-2.5/>2.5)											Sou Elimin	rce ated [‡]	Noncon- vergence [@]			
Source(s)	#	Actual	HERM	CMB	x vs y	x vs z	y vs z		x v	s y			хv		y vs z				HERM	CMB	HERM	CMB	
		(x)	(y)	(z)																			
				L	ow coll	inearity	betwee	en U-Dust and R-Dust (α = 0.9)															
AMSUL	50	2.404	2.418	2.418	0.992	0.992	1.000	24	19	7	0	44	6	0	0	50	0	0	0	0	0	0	0
BB	50	4.758	4.831	4.831	0.985	0.985	1.000	26	21	3	0	45	5	0	0	50	0	0	0	0	0	0	0
MV	50	4.899	4.887	4.887	0.993	0.993	1.000	25	19	6	0	44	6	0	0	50	0	0	0	0	0	0	0
U-Dust	50	2.479	2.256	2.257	0.738	0.738	1.000	8	14	15	13	19	26	2	0	47	0	0	0	0	3	0	0
R-Dust	50	2.488	2.597	2.597	0.892	0.892	1.000	11	18	12	9	26	21	2	1	50	0	0	0	0	0	0	0
Sum		17.029	16.990	16.990		1	1					HE	RM:	$x^2 =$	0.15	51				1	1	1	1
Median collinearity between										een U-Dust and R-Dust (α = 0.99)													
AMSUL	50	2.404	2.418	2.418	0.990	0.990	1.000	16	25	9	0	42	8	0	0	50	0	0	0	0	0	0	0
BB	50	4.758	4.900	4.900	0.979	0.979	1.000	19	27	4	0	48	1	1	0	50	0	0	0	0	0	0	0
MV	50	4.899	4.820	4.820	0.989	0.989	1.000	26	18	6	0	45	4	1	0	50	0	0	0	0	0	0	0
U-Dust	50	2.479	2.589	2.588	0.179	0.179	1.000	15	26	8	1	22	4	4	8	38	0	0	0	0	12	0	0
R-Dust	50	2.488	2.337	2.338	0.276	0.277	1.000	13	28	8	1	23	3	1	9	36	0	0	0	0	14	0	0
Sum		17 029	17 063	17 063								HF	RM.	$r^2 =$	0.17	/1							
		17.025	17.005	Hi	gh collir	nearity	betwee	n U-I	Dust	and	R-D)ust	(α =	<u>,</u> 0.99	8)	-							
AMSUL	50	2.404	2.401	2.444	0.985	0.985	1.000	24	18	5	3	39	9	1	0	49	0	0	0	0	0	0	1
BB	50	4.758	4.769	4.699	0.987	0.987	1.000	26	21	3	0	45	4	0	0	49	0	0	0	0	0	0	1
MV	50	4.899	4.896	4.864	0.996	0.996	1.000	30	18	2	0	46	3	0	0	49	0	0	0	0	0	0	1
U-Dust	50	2.479	1.739	1.656	0.029	0.017	0.997	47	3	0	0	7	1	2	10	20	0	0	0	0	29	0	1
R-Dust	50	2.488	3.165	3.208	0.051	0.055	0.997	48	2	0	0	8	3	1	24	36	0	0	0	0	13	0	1
Sum		17 029	16 970	16 871								HF	RM.	$r^2 =$	0 1 ¹	38							

681 *^{†‡□}See footnotes in Table 1.

con	-
683	

	Samples	Mean Contribution [*] (μg m ⁻³)			Correlation (r ²)	(<0.5/	R/U R 0.5-1.5/	Ratio [†] /1.5-2.5	/>2.5)	Sou Elimin	rce ated [‡]	Noncon- vergence [@]		
Source(s)	#	Actual	HERM (y)	CMB (z)	y vs z		y v	s z		HERM	CMB	HERM	CMB	
AMSUL	226		0.555	0.553	1.000	213	1	0	0	0	0	0	12	
AMNIT	226		0.161	0.158	1.000	210	0	0	0	0	4	0	12	
RDust1	226		0.005	0.005	0.998	109	0	0	0	0	105	0	12	
RDust2	226		0.123	0.122	0.991	134	3	0	0	0	77	0	12	
ADust	226		0.506	0.514	0.999	195	0	0	0	0	19	0	12	
BBh	226		0.105	0.107	1.000	174	0	0	0	0	40	0	12	
BBI	226		1.358	1.363	1.000	188	0	0	0	0	26	0	12	
MV	226		0.419	0.422	0.996	212	1	0	0	0	1	0	12	
Coal	226		0.029	0.025	0.427	195	1	0	0	0	18	0	12	
Sum		3.760	3.261	3.269		HERM: $x^2 = 1.81$								

Table 3. Source apportionment of ambient PM_{2.5} speciation dataset (BSP 2008-2009) by CAS HERM and EPA CMB.

*Source contribution (S_{ik}) derived by HERM and EPA CMB models are noted as y and z, respectively. Mean values take into account all available 684 data. The 9 sources include ammonium sulfate (AMSUL), ammonium nitrate (AMNIT), two road dusts (RDust1, RDust2), Asian dust (ADust), 685

wood burning with both low and high combustion efficiencies (BBh and BBl), traffic (MV), and miscellaneous coal combustion (Coal). 686

[†]Residue-Uncertainty (R/U) ratio of y and z is calculated by $|y-z|/(\sigma_v^2 + \sigma_z^2)^{\frac{1}{2}}$, where σ_v and σ_z is the source contribution uncertainty estimated by 687

HERM and EPA CMB, respectively. The ratios are then categorized into 4 ranges: <0.5, 0.5-1.5, 1.5-2.5, and >2.5 with numbers in each range 688

shown in the table. 689

690 [‡]Number of source eliminated due to negative source contribution. When occurring, no uncertainty estimate is provided by EPA CMB.

¹Number of non-convergence due to collinearity. When occurring, no uncertainty estimate is provided by HERM or EPA CMB. 691

693	Table 4. Source apportion	ment of simulated PM _{2.5}	speciation dataset	(Scenario A) by	CAS HERM and EPA	PMF 5.0, compared with
-----	---------------------------	-------------------------------------	--------------------	-----------------	------------------	------------------------

694 the actual source contributions.

	Samples	Mea	n Contribu	Correlation (r ²) R/U Ratio [†]				(<0.5/0.5-1.5/1.5-2.5/>2.5)								Noncon-vergence [‡]					
Source(s)	#	Actual	HERM ⁴⁺¹	HERM ³⁺²	x vs y	x vs z	y vs z		x v	s y		x vs z				y vs z				HERM ⁴⁺¹	HERM ³⁺²
		(x)	(y)	(z)																	
AMSUL	50	2.591	2.610	2.808	0.982	0.975	0.993	19	22	7	2	5	14	9	22	10	23	14	3	0	0
AMNIT	50	4.817	4.748	4.828	0.986	0.986	1.000	13	24	10	3	5	18	17	10	33	11	4	2	0	0
BB	50	4.866	4.750	4.701	0.987	0.994	0.992	20	20 15 6 9		19	25	5	1	33	17	0	0	0	0	
MV	50	2.423	2.513	3.393	0.977	0.996	0.968	8	8 17 10 15			3	4	12	31	4	8	10	28	0	0
U-Dust	50	2.330	2.213	1.124	0.982	0.543	0.552	11	24	10	5	0	0	2	48	3	2	6	39	0	0
Sum		17.026	16.834	16.854		1	1	ŀ	IERN	И ⁴⁺¹	$x^2 =$	= 0.1	21; ŀ	IERN	۸ ³⁺² :	$x^2 =$	0.0	93		1	
Source(s)	#	Actual	HERM ⁰⁺⁵	PMF	x vs y	x vs z	y vs z		x v	s y		x vs z				y vs z				HERM ⁰⁺⁵	PMF
		(x)	(y)	(z)																	
AMSUL	50	2.591	2.474	3.368	0.976	0.937	0.976	10	18	7	15	2	3	5	40	1	2	6	41	0	0
AMNIT	50	4.817	6.765	5.989	0.976	0.955	0.973	4	5	2	39	3	3	4	40	7	16	4	23	0	0
BB	50	4.866	2.366	2.705	0.570	0.557	0.981	1	1	3	45	3	3	4	40	10	19	15	6	0	0
MV	50	2.423	3.963	3.186	0.995	0.958	0.962	4	5	3	38	3	4	2	41	7	10	5	28	0	0
U-Dust	50	2.330	1.310	1.594	0.098	0.207	0.915	0	4	2	44	0	6	6	38	13	13	15	9	0	0
Sum		17.026	16.878	16.842		HERM ⁰⁺⁵ : $\chi^2 = 0.152$; PMF: $\chi^2 = 0.161$															

^{*}Actual source contribution (S_{jk}) and those derived by HERM or EPA PMF models are noted as x, y, or z, respectively. Mean values take into

account all available data. HERM⁴⁺¹ specifies 4 source profiles (AMSUL, AMNIT, MV, and U-Dust) while calculating 1 source profile (BB).

697 HERM³⁺² specifies 3 source profiles (AMSUL, AMNIT, and U-Dust) while calculating 2 source profiles (BB and MV). HERM⁰⁺⁵ and PMF

698 calculate all 5 profiles (non-specified). Calculated source profiles are matched to the known sources by ranking the correlation coefficients across699 source contributions.

700 ^{\dagger *}See footnotes in Table 1.

Table 5. Source apportionment of simulated PM_{2.5} speciation dataset (Scenario A) by CAS HERM, compared with the actual source

703	contributions.
	•••••••••••••••••••••••••••••••••••••••

	Samples	Mean Cor (μg	ntribution [*] m⁻³)	Correlation (r ²)	(<0.5/	R/U Ratio [†] (<0.5/0.5-1.5/1.5-2.5/>2.5)						
Source(s)	#	Actual	HERM ^{3+2'}	x vs y	x vs y							
		(x)	(y)									
AMSUL	50	2.591 2.806		0.975	5	14	10	21				
AMNIT	50	4.817 4.825		0.986	8 20		13	9				
BB	50	4.866	4.460	0.989	7	25	12	6				
MV	50	2.423	2.294	0.996	16	33	1	0				
U-Dust	50	2.330	2.470	0.987	7	7 9 14 2						
Sum		17.026	16.855	Н	$\text{ERM}^{3+2'}$: $x^2 = 0.124$							

^{*}Actual source contribution (S_{jk}) and those derived by HERM are noted as x and y, respectively. Mean values take into account all available data.

HERM^{3+2'} specifies 3 source profiles (AMSUL, AMNIT, and U-Dust) while also specifying the silicon (Si) and calcium (Ca) contents in one of the

two unknown source profiles to be zero. Other profile elements are calculated by the model. Derived source profiles are matched to BB or MV

707 according to correlation coefficients across source contributions.

[†]See footnotes in Table 1.

Samples	es Mean Source Contribution [*] (μg m ⁻³)							relation	(r ²)	R/U Ratio [†] (<0.5/0.5-1.5/1.5-2.5/>2.5)														
#	EV-CMB Sources HER		HERM ⁴⁺² S	Sources HERM ⁵⁺² Sources			x vs y	x vs z	y vs z	x vs y					x v	s z		y vs z						
	(x)		(y)		(z)																			
226	AMSUL	0.555	AMSUL	0.488	AMSUL	0.481	0.986	0.987	0.999	56	160	10	0	27	98	58	43	221	5	0	0			
226	AMNIT	0.161	AMNIT	0.174	AMNIT	0.172	0.991	0.992	1.000	204	22	0	0	177	49	0	0	226	0	0	0			
226	RDust1	0.005																						
226	RDust2	0.123	RDust2	0.096	RDust2	0.092	0.254	0.435	0.844	158	62	6	0	121	86	19	0	219	7	0	0			
226	ADust	0.506	ADust	0.515	ADust	0.510	0.966	0.973	0.995	169	54	3	0	123	88	14	1	218	8	0	0			
226	BBh	0.105								1														
226	BBI	1.358	BB	2.217	BB	2.256	0.966	0.972	0.999	38	85	79	24	11	34	39	142	204	22	0	0			
226	MV	0.419	MV + Ind.	0.204	Ind.	0.124	0.803	0.759	0.936	11	146	62	7	0	1	3	222	7	40	67	112			
226	Coal	0.029			MV	0.076		0.017						88	107	27	4							
	Sum	3.261		3.694		3.712		$\chi^2 = 1.81 (EV-CMB), 1.53 (HERM^{4+2}), and$										d 1.23 (HERM ⁵⁺²)						

Table 6. Source apportionment of ambient PM_{2.5} speciation dataset (BSP 2008-2009) by CAS HERM models.

*Source contribution (S_{jk}) derived by three HERM models are noted as x, y and z, respectively. EV-CMB is accomplished by HERM using 9 full

source profiles (same as Table 3), HERM⁴⁺² specifies 4 source profiles while calculating 2 source profiles, and HERM⁵⁺² specifies 5 source profiles while calculating 2 source profiles. The last two use the HERM hybrid mode. Mean values take into account all available data.

⁷¹⁴ Source (profiles) calculated by HERM. "Ind." stands for mixed industrial emissions.

[†]Residue-Uncertainty (R/U) ratio of x and y is calculated by $|y-x|/(\sigma_x^2 + \sigma_y^2)^{\frac{1}{2}}$ where σ_x and σ_y are the source contribution uncertainty estimated by

HERM. The ratios are then categorized into 4 ranges: <0.5, 0.5-1.5, 1.5-2.5, and >2.5 with numbers in each range shown in the table. Similarly,

717 R/U ratio of x and z is calculated by $|z-x|/(\sigma_x^2 + \sigma_z^2)^{\frac{1}{2}}$ and R/U ratio of y and z is calculated by $|y-z|/(\sigma_y^2 + \sigma_z^2)^{\frac{1}{2}}$.

TOC Image

338x190mm (96 x 96 DPI)