
Science of the Total Environment 550 (2016) 961–971

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Characterization of PM2.5 in Guangzhou, China: uses of organic markers
for supporting source apportionment
Jingzhi Wang a,b, Steven Sai Hang Ho a,c, Shexia Ma d, Junji Cao a,b,e,⁎, Wenting Dai a,b, Suixin Liu a,b,
Zhenxing Shen e, Rujin Huang a,b,f, Gehui Wang a,b, Yongming Han a,b

a Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
b State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
c Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, United States
d South China of Institute of Environmental Sciences, SCIES, Guangzhou, China
e Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
f Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• PM2.5, OC, EC and organic biomarkers
were quantified in Guangzhou in
2012/2013.

• Vehicle emission, coal combustion and
SOC are consistent pollution sources
for OC.

• PAHs, alkanes, PAEs, and hopanes were
used for the source assessment.
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Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (n-C14-n-C40),
polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs) and hopaneswere quantified in fine particulate
(PM2.5), whichwere collected in urban area of Guangzhou, China inwinter and summer in 2012/2013. The pollut-
ants levels were well comparable with the data obtained in previous studies in Pearl River Delta (PRD) region but
much lower than most northern Chinese megacities. The contribution of EC to PM2.5 and OC/EC ratio suggest that
the pollution sources were relatively consistent in GZ between the two seasons. Benzo[a]pyrene (BaP) was the
most abundant PAHs, which were 4.9 and 1.0 ng/m3 on average, accounting for 10.7% and 9.1% to the total quan-
tified PAHs inwinter and summer, respectively. The total concentrations of PAEs ranged from289.1 to 2435 ng/m3

and from102.4 to 1437ng/m3, respectively, inwinter and summer. Di-n-butyl phthalate (DBP)was themost dom-
inant PAEs. The ambient levels of PAEs could bepartly attributed to thewidespread uses of the householdproducts,
municipal garbage compressing, sewage, and external paintingmaterial on the building. Source apportionment for
OC with chemical mass balance (CMB) model demonstrated coal combustion, vehicle emission, cooking, and
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secondary organic compounds (SOC) formation were the four major pollution sources. Both of the indices of
n-alkanes and diagnostic PAHs ratios support that anthropogenic sources such as vehicle emission and coal
combustionwere the significant pollution sourceswith some extents from epicuticular waxes by terrestrial plants.
The ratio of hopanes to EC proved the influences from vehicle emission, and displayed a certain degree of the air
aging in the Guangzhou ambient air.

© 2016 Elsevier B.V. All rights reserved.
Guangzhou
Source identification
1. Introduction

Carbonaceous aerosol, mainly consist of organic carbon (OC) and
element carbon (EC), accounted for 20–50% of the PM2.5 (particulate
matter [PM] with aerodynamic equivalent diameters of Dp b 2.5 μm)
mass in Chinese urban atmosphere (Cao et al., 2007). EC is directly
emitted from the pollution sources such as the incomplete combustion
of fossil fuels. OC can be generated from the direct emission sources or
formed as secondary organic carbons (SOC) by photochemical reactions
or other reactive ways. Epidemiological studies demonstrated that the
carbonaceous materials associated with potential detrimental human
health effects, ecosystems, and climate change (Pope and Dockery,
2006; Venkataraman et al., 2002; Oanh et al., 2002; Saxena and
Hildemann, 1996). Many organic compounds such as polycyclic
aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) are well-
known mutagens or carcinogens (Li et al., 2015; Bui et al., 2016; Marr
et al., 2006; Zheng et al., 2000; Takahashi et al., 2006) and a great duel
of attentions has been drawn on their ambient levels and potential
origins in mega-cities such as Beijing, Shanghai, Guangzhou and
Nanjing in China (Lin et al., 2015; Zheng et al., 2011; Feng et al., 2006;
Gao et al., 2012a; Wang and Kawamura, 2005).

Guangzhou (GZ), a mega-city in Guangdong province, is located in
the center of Pearl River Delta (PRD) region where has been influenced
from serious pollutions occasionally. Few researches have been
conducted for the characterizations of organic compounds (e.g., Cao
et al., 2007; Gao et al., 2015; Gao et al., 2012b). Bi et al. (2005) and Liu
et al. (2006) have reported that vehicle emissionwas themost important
local pollution source for PAHs and n-alkanes in GZ. This is further sup-
ported by Xu et al. (2013) who quantified particulate-phase non-polar
organic compounds during the period of 16th Asian Games. In recent
years, stricter vehicle emission controls have been established in GZ.
Dai et al. (2015) conducted a tunnel study in 2013 and reported that
the emission factors for PM2.5, OC, EC, and water-soluble inorganic ions
(WSII) except chloride ion (Cl−) and organic compounds, were
decreased by 16.0–93.4% compared with the data obtained in 2004 (He
et al., 2008). Coal combustion was also significant source for particulate
bounded PAHs in wintertime (Gao et al., 2015). Besides, stationed com-
bustion sources (e.g., industries) and kitchen lampblacks contributed to
most of the non-volatile organics, while biological source has a minor
contribution as well (Liu et al., 2006). In an episode study, Zhang et al.
(2015) found that fossil emissions from coal combustion and vehicle
exhaust accounted about 75 ± 8% and 35 ± 7%, respectively, for EC
and OC during the haze period in January, 2013. Liu et al. (2014) addi-
tionally reported that the average contributions of fossil carbon to EC
were 71 ± 10% and the local vehicle emission is the main pollution
source in the haze samples. Secondary formation also accounted a large
fraction of aerosol (Huang et al., 2014). Cui et al. (2015) combined the
observation data analysis and chemical transport model simulation to
conduct source apportionment of PM2.5 in GZ. Stationary source
(e.g., industrial and power-generated) was the largest contributor to
PM2.5 and mobile sector played an important role both in dry and wet
seasons,while transport played an important role for PM2.5 in dry season.
Wang et al. (2016) summarized the variations in PM2.5 and its chemical
components in the Pearl River Delta Economic Zone (PRDEZ) from 2000
to 2010, showing that motor vehicle had an important impact on the
levels of OC and EC. Furthermore, there was a rapid increase for the
calculated SOC.
In short, even though many researchers have conducted source
characterization in GZ and the PRD region in the past years, comprehen-
sive studies are still needed to investigate on the changes on the compo-
sitions of PM2.5 and their corresponding pollution sources. This work
reports the chemical compositions and seasonal variations of OC, EC
and non-polar organic compounds including PAHs, n-alkanes, PAEs
and hopanes in GZ in 2012 and 2013. Potential pollution sources
for OC were identified by means of modeling. Different indices of
n-alkanes, diagnostic ratios of PAHs, and source markers of hopanes
were used to support the source characterization, further compared
with the previous studies conducted in GZ.

2. Materials and methods

2.1. Sampling

The sampling site was located at the atmosphere monitoring station
of South China Institute of Environmental Sciences, which is in an urban
area of GZ city. A high-volume air sampler (Airmetrics, Oregon, USA)
was used to collect daily PM2.5 samples on quartz-fiber filters
(20.3 cm × 25.4 cm, GE Healthcare., Little Chalfont, Buckinghamshire,
U.K.) at a flow rate of 1.05 m3/min. One twenty-four hour integrated
sample (from 9:00 am to the next day 9:00 am) was collected in each
week from 10th May 2012 to 30th May 2013. Field blank was also col-
lected every month which was used to correct for any positive artifacts
such as organic absorption. A total of 24 samples were obtained in sum-
mer (June to August 2012) and winter (December 2012 to February
2013), respectively. Meteorological parameters, including temperature,
relative humidity (RH) andwind speed, were obtained in thewebsite of
National Climatic Data Center (NCDC) (ftp://ftp.ncdc.noaa.gov/pub/
data/gsod/) (Table S1). The records of boundary layer heights were
obtained from the website of European Centre for Medium-Range
Weather Forecasts (ECMRWF) (http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype=sfc/). All of the samples were wrapped in
solvent-washed aluminum foil and stored in a freezer at −20 °C until
analysis to prevent any loss of volatiles.

2.2. Mass and carbonaceous aerosol analyses

Our previous studies have detailed themass and carbonaceous aero-
sol analysis (Wang et al., 2015a; Cao et al., 2005). In brief, prior to the
sampling, blank quartz filters were pre-baked in a furnace at 800 °C
for 4 h in order to remove any contaminants, and then stored in freezer
at b4 °C. For mass determinations, the filters were weighed before and
after the samples were loaded. They were equilibrated in a chamber,
which maintained at a constant temperature of 20–23 °C and RH of
40 ± 5% for at least of 24 h. Then the filters were weighted with a
Sartorius ME 5-F electronic microbalance (±1 μg sensitivity; Sartorius,
Göttingen, Germany). The variances were ≤15 μg and ≤20 μg, respec-
tively, for the pre- and post- sampling weighing. The PM2.5 mass on
the field blanks were below ≤63 μg and ≤40 μg for summer and winter,
respectively.

Carbonaceous aerosol components, OC and EC, were quantified
using a Desert Research Institute (DRI) Model 2001 carbon analyzer
(Atmoslytic Inc., Calabasas, CA, USA). The IMPROVE_A thermal/optical re-
flectance (TOR) protocol was used for the analyses (Chow et al., 2007a).
Total OC was defined as the sum of four OC fractions (OC1-OC4) plus

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
http://apps.ecmwf.int/datasets/data/interimullaily/levtype=fc/
http://apps.ecmwf.int/datasets/data/interimullaily/levtype=fc/
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OP, whereas total EC was defined as the sum of three EC sections
(EC1-EC3) minus OP.

2.3. Organic speciation

In-injection port thermal desorption (TD) coupledwith gas chroma-
tography/mass spectrometry (GC/MS) was applied to quantify of the
non-polar organic compounds including PAHs, n-alkanes, PAEs and
hopanes in the PM2.5 filter samples. This approach acts as an alternative
method of traditional solvent extraction followed by GC/MS analysis
(Wang et al., 2015a). The detail analytical procedures have been report-
ed in our previous publications (Wang et al., 2015a; Ho and Yu, 2004;
Chow et al., 2007b; Ho et al., 2008, 2011). An Agilent 7890A GC/5975C
MS system (Agilent Technology, Inc., Santa Clara, CA, USA) were used
which operated in electron impact (EI) ionization mode. In brief, ali-
quots of the sample filter (0.1–0.526 cm2, subjected to the loading)
was cut into small pieces and transferred into a TD tube. The
sample-loaded tube was placed into the GC injection port at 50 °C. The
injection port temperature was then raised to 275 °C for desorption in
a splitless mode while the GC oven temperature was kept at 30 °C.
Separation of organic compounds was performed with a HP-5MS
(30 m × 0.250 mm i.d., 0.25 μm film thickness, Agilent Technologies,
Inc.) capillary column. The constant flow rate of carrier gas helium
(UHP grade, 99.999% purity) was 1.2 mL/min. The MSD was scanned
from 50 to 550 amu. The EI voltage was 70 eV and selected ion mode
was applied for the quantification. Identification was achieved by char-
acteristic ion and comparing the retention times of the chromatographic
peaks with those of standards. Only trace amounts of volatile n-alkanes
(i.e., n-Cb17) but no targeted PAHs, PAEs, and hopaneswere found in the
field blanks.

2.4. Quality assurance and control (QA/QC)

The QA/QC procedures used in this study were as the same as those
have been previously presented by Cao et al. (2003, 2011) and Ho et al.
(2006, 2011). In brief, the aerosol sampler was checked and calibrated
regularly during the sampling periods, and the field blank filters were
collected to correct for backgrounds. For the OC/EC analysis, the instru-
ment was calibrated with known quantities of methane daily. Replicate
analyses were done for each group of ten samples. Blank filters were
also analyzed and the sample results were corrected for the average of
the blank concentrations, which were 1.72 and 0.09 μg/m3 for OC and
EC, respectively. The detection limits for EC and OC were b1.0 μg/m3.
The relative deviation of replicate analyses was b5% for TC (total
carbon), and b10% for OC and EC.

PAHs, n-alkanes (n-C14-n-C40), PAEs and hopanes were quantified
using the TD-GC/MS instrumentation. Chrysene-d12 (C18D12) (98%,
Sigma-Aldrich, Bellefonte, PA, USA) was added as internal standard
(IS) for the PAH and PAEs and n-tetracosane-d50 (n-C24D50) (98%,
Aldrich, Milwaukee, WI, USA) for the n-alkanes and hopanes. A
five-point calibration over a concentration range of 0.5–5.0 ng for each
of the target compounds from a standard mixture (Sigma-Aldrich,
Bellefonte, PA, USA) was established, and the correlation coefficients
(R2) for linear regressions of the calibration curves were N0.99. For
each ten samples, one replicate analysis was done; the relative standard
deviation of these replicates was b15%. The limits of detection (LOD) for
the targeted organic species are listed in Table S2. All data were
corrected for the average value of the blanks.

3. Results and discussion

3.1. PM2.5 mass and concentrations of OC and EC

The PM2.5masses and concentrations of OC and EC in GZ are summa-
rized in Table 1. The PM2.5masseswere in a range of 33.3 to 334.3 μg/m3

and 21.4 to 163.0 μg/m3, respectively, inwinter and summer. The values
were lower than those measured in northern urban cities such as
Beijing, Tianjin, Taiyuan and Xi'an, where are often known as heavy pol-
luted areas in China (Cao et al., 2007; Zhou et al., 2012; Tao et al., 2009).
The average concentrations of OC and EC were 12.8 ± 8.7 and 2.1 ±
1.2 μg/m3, respectively, in winter, and 7.6± 2.9 and 1.7± 0.5 μg/m3, re-
spectively, in summer. The statistics showed that therewere no obvious
differences on OC and EC between winter and summer (P N 0.05). Our
OC and EC values were, again, N50% lower than those average levels in
the northern cities including Shanghai (28.6 and 8.3 μg/m3), Beijing
(25.9 and 6.1 μg/m3), and Xi'an (61.9 and 12.3 μg/m3) (Cao et al.,
2005; Cao et al., 2007; Zhou et al., 2012). The finding was consistent
with the study conducted by Huang et al. (2014). Besides, the averages
were well comparable with the data measured (11.1 and 3.9 μg/m3 for
OC and EC, respectively) in Shenzhen and Dongguan (10.4 and
2.68 μg/m3 for OC and EC, respectively), another southern city in PRD re-
gion (Hagler et al., 2006;Wang et al., 2015b). In comparison with other
international urban cities, the OC and EC levels in GZ were higher than
in Veneto region in Italy (5.5 and 1.31 μg/m3, respectively) (Khan
et al., 2016), but lower than in Delhi, India (33.8 and 4.0 μg/m3, respec-
tively in daytime), and Santiago, Chile (5.6–22, 4.3 μg/m3 respectively)
(Tiwari et al., 2015; Villalobos et al., 2015).

Good correlations between PM2.5 mass and OC, EC were showed
during the sampling periods (Fig. S1) though higher PM2.5 masses and
concentrations of OC and EC were observed in winter. However, the
average contributions of EC to PM2.5 were very close between the two
seasons (0.33 and 0.40 in winter and summer, respectively). EC is less
prone to gas-phase chemical reactions in the atmosphere and often
used as an anthropogenic source emissions tracer. In addition, the corre-
lations between OC and EC were 0.87 and 0.85, respectively, in winter
and summer. Therefore, even though more pollutants were produced
from anthropogenic and biological sources in the wintertime, both of
the contribution and ratio suggest that the classes of pollution sources
were often consistent in GZ between the two seasons. The meteorolog-
ical conditions such as temperature (T), RH (H), boundary layer height
(MLH) and horizontal wind speed (U) were displayed in Table S1. It is
inspected that ventilation coefficient (VC) were the main factors in
this study. The VC is calculated by:

VC ¼ MLH� U:

VC is used as a directmeasure to characterize the degree of transport/
dispersion of the pollutants taking place within convective boundary
layer. The higher values of VC indicate effective dispersion (Kompalli
et al., 2014). The correlation coefficient between the PM2.5 concentra-
tions, OC, EC andVCwere R2=0.48, 0.41, and 0.39, respectively (Fig. S2).

Fig. 1 shows the average compositions of each carbon fraction to total
carbon (TC) in the OC/EC analysis. OP was the highest contributor,
followed by OC2, OC3 and EC1. Chow andWatson reported that those in-
dividual carbon fractions can be appointed to specific pollution sources
(Chow et al., 2004; Watson et al., 1994). The major emission sources
for OC and EC in China include coal combustion (mostly residential),
motor vehicle, and biomass burning (Streets et al., 2001; Cao et al.,
2003). High loading of OP and EC1 generally reflect to gasoline-fueled
motor vehicle emission (Chow et al., 2004). OC2, OC3, and EC1 can
represent the mixed pollution sources from residential cooking, coal-
combustion, vehicle emission and SOC (Cao et al., 2004). The high OP
suggested that gasoline-fueled vehicle emissionwas themost dominant
local source in GZ, where was much less influenced by the residential
coal combustion than northern China due to warmer climate. No obvi-
ous seasonal variation was observed on the carbon fractioning as well,
representing that the consistency of classes of carbon pollution sources.

3.2. Concentrations of PAHs and n-alkanes

A total of 17 PAHs and 27 n-alkanes (n-C14-n-C40) were quantified in
this study (Table 1). Their concentrations and abbreviations were



Table 1
Summary of PM2.5 mass, concentrations of OC, EC and non-polar organic species in Guangzhou.

Species Unit
Winter Summer

Mean ± SD Range Mean ± SD Range

PM2.5 mass μg/m3 108.3 ± 94.2 33.3–334.3 55.1 ± 43.3 21.4–163.0
OC μg/m3 12.8 ± 8.7 4.9–33.2 7.6 ± 2.9 4.0–12.2
EC μg/m3 2.1 ± 1.2 1.7–2.6 1.7 ± 0.5 1.2–2.7
PAHs ng/m3

Fluorene (FLO) 2.25 ± 3.25 0.30–8.67 0.63 ± 0.18 0.45–0.95
Phenanthrene (PHE) 3.00 ± 4.2 0.40–10.7 0.58 ± 0.36 0.27–1.47
Anthracene (ANT) 0.79 ± 0.26 0.54–1.38 0.46 ± 0.10 0.41–0.71
Fluoranthene (FLU) 2.60 ± 2.51 1.09–9.11 0.66 ± 0.15 0.55–1.05
Pyrene (PYR) 2.73 ± 2.50 1.10–9.00 0.68 ± 0.16 0.56–1.08
Benz[a]anthracene (BaA) 1.56 ± 0.82 0.78–3.24 0.12 ± 0.24 0.008–0.76
Chrysene (CHR) 2.66 ± 1.76 1.05–6.23 0.57 ± 0.11 0.49–0.85
Benzo[b]fluoranthene (BbF) 4.16 ± 3.29 1.28–10.15 0.63 ± 0.25 0.46–1.29
Benzo[k]fluoranthene (BkF) 3.41 ± 2.21 1.30–7.71 0.73 ± 0.17 0.62–1.17
Benzo[a]fluoranthene (BaF) 1.51 ± 0.60 0.87–2.52 0.49 ± 0.30 LOD-0.93
Benzo[e]pyrene (BeP) 3.62 ± 3.28 1.22–10.4 0.51 ± 0.41 LOD-1.07
Benzo[a]pyrene (BaP) 4.86 ± 5.14 1.18–17.6 0.95 ± 0.55 0.56–2.25
Perylene (PER) 1.15 ± 0.26 0.85–1.60 0.80 ± 0.52 0.60–2.15
Indeno[1,2,3-cd]pyrene (IcdP) 3.24 ± 2.36 1.11–8.13 0.92 ± 0.11 0.81–1.17
Dibenzo[a,h]anthracene (DahA) 3.88 ± 1.67 2.17–6.86 0.54 ± 0.67 0.20–2.31
Benzo[ghi] perylene (BghiP) 1.47 ± 0.60 0.90–2.49 0.74 ± 0.29 LOD-1.00
Coronene (COR) 2.60 ± 0.61 1.96–3.83 0.41 ± 0.63 0.14–2.09
∑ PAHsa 45.5 ± 29.7 18.6–105.8 10.4 ± 3.9 7.0–19.9
n-alkanes ng/m3

Tetradecane (C14) 1.72 ± 2.23 0.32–5.75 0.64 ± 0.10 0.42–0.77
Pentadecane (C15) 3.52 ± 5.67 0.32–14.0 0.61 ± 0.18 0.40–0.99
Hexadecane (C16) 3.02 ± 4.12 0.53–11.6 1.14 ± 0.52 0.71–2.44
Heptadecane (C17) 1.89 ± 1.97 0.44–5.74 1.03 ± 0.61 0.55–2.57
Octadecane (C18) 1.21 ± 0.99 0.30–3.28 0.69 ± 0.36 0.36–1.62
Nonadecane (C19) 2.00 ± 2.96 0.16–9.72 0.64 ± 0.77 0.07–2.57
Icosane (C20) 0.91 ± 0.59 0.22–2.23 0.30 ± 0.17 0.13–0.67
Heneicosane (C21) 1.03 ± 0.87 0.12–2.94 0.27 ± 0.12 0.10–0.45
Docosane (C22) 1.68 ± 1.34 0.21–4.83 0.42 ± 0.09 0.30–0.57
Tricosane (C23) 2.89 ± 2.50 0.87–9.00 0.75 ± 0.37 0.30–1.62
Tetracosane (C24) 5.64 ± 5.95 1.54–20.8 1.13 ± 0.54 0.49–2.08
Pentacosane (C25) 8.10 ± 8.82 2.37–30.5 1.03 ± 0.29 0.67–1.64
Hexacosane (C26) 8.16 ± 7.69 1.54–26.2 1.47 ± 0.46 1.03–2.56
Heptacosane (C27) 7.38 ± 6.60 1.79–23.8 2.04 ± 0.35 1.61–2.70
Octacosane (C28) 5.59 ± 4.20 1.07–15.3 2.18 ± 0.49 1.58–2.94
Nonacosane (C29) 8.82 ± 6.26 2.06–23.2 2.49 ± 0.49 1.75–3.40
Triacontane (C30) 5.73 ± 4.23 0.48–14.8 1.96 ± 0.59 1.33–2.91
Hentriacotane (C31) 12.8 ± 10.1 1.84–32.9 2.89 ± 1.00 1.91–4.79
Dotriacontane (C32) 4.60 ± 4.31 0.45–13.3 1.34 ± 0.30 0.88–1.72
Tritriactotane (C33) 6.28 ± 5.28 0.79–16.0 1.60 ± 0.53 1.00–2.52
Tetratriactoane (C34) 3.13 ± 3.00 LOD-9.94 0.70 ± 0.30 0.37–1.24
Pentatriacontane (C35) 2.60 ± 1.89 LOD-6.44 0.60 ± 0.24 0.30–1.08
Hexatriacontane (C36) 1.74 ± 1.54 LOD-4.68 0.29 ± 0.23 LOD-0.69
Heptatriacontane (C37) 1.29 ± 1.39 LOD-3.12 0.02 ± 0.061 LOD-0.19
Octatriacontane (C38) 0.60 ± 1.10 LOD-3.17 NA NA
Nonatriacontane (C39) 0.30 ± 0.61 LOD-1.64 NA NA
Tetracontane (C40) 0.08 ± 0.25 LOD-0.74 NA NA
∑ n-alkanesa 102.7 ± 73.8 25.4–267.1 26.2 ± 6.9 19.4–42.2
PAEs ng/m3

Dimethyl phthalate(DMP) 23.8 ± 17.1 LOD-41.7 18.5 ± 17.6 LOD-36.2
Diethyl phthalate(DEP) 13.0 ± 18.3 LOD-40.0 8.60 ± 17.1 LOD-39.7
Di-n-butyl phthalate(DBP) 408 ± 237 125–811 162 ± 405 18.5–1242
Benzyl butyl phthalate(BBZP) 39.5 ± 15.4 28.9–72.4 32.6 ± 14.6 26.3–71.6
Bis(2-ethylhexyl )phthalate(DEHP) 148 ± 142 LOD-373 21.6 ± 20.8 LOD-46.2
Di-n-octyl phthalate(DNOP) 202 ± 268 LOD-791 42.3 ± 20.8 32.2–97.5
Bis(2-ethylhexyl)adipate(DEHA) 32.4 ± 20.5 LOD-69.2 37.4 ± 28.8 22.4–109
∑ PAEsa 1218.5 ± 653.6 289.1–2434.8 323.2 ± 420.2 102.4–1436.9
Hopanes ng/m3

17α(H)-21β(H)-hopane 0.59 ± 0.47 0.26–1.42 0.85 ± 0.25 0.48–1.14
17α(H)-21β(H)-30-norhopane 0.33 ± 0.24 0.14–0.81 0.49 ± 0.13 0.32–0.63
17α(H)-22,29,30-trisnohopane 0.28 ± 0.17 LOD-0.47 0.32 ± 0.11 LOD-0.43
∑hopanesa 1.2 ± 0.9 0.40–2.71 1.65 ± 0.49 1.2–2.15

a ΣPAHs is sum of fluorine, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]fluoranthene,
benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-cd]pyrene, benzo[ghi] perylene, dibenzo[a,h]anthracene, and coronene. ∑ n-alkanes are sum of alkanes, which carbon atoms
were from C14 to C41. ∑ PAEs is sum of dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl )phthalate, di-n-octyl phthalate, and bis(2-
ethylhexyl)adipate. ∑hopanes is sum of 17α(H)-21β(H)-hopane, 17α(H)-21β(H)-30-norhopane and 17α(H)-22,29,30-trisnohopane.
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showed in Table 1. Inwinter, the total concentrations of PAHs (∑PAHs)
and n-alkanes (∑n-alkanes) were in a range of 18.6 to 105.8 and 25.4
to 267.1 ng/m3, respectively, which were much higher than those in
summer, ranging from 7.0 to 19.9 and 19.4 to 42.2 ng/m3, respectively
(Pb 0.05). Such seasonal differences are consistentwith the typicalfind-
ings in the urban atmospheres, where influenced by a higher amount of



Fig. 1. Average percentage of carbon fractions in PM2.5 in Guangzhou.
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pollution sources in wintertime (Panther et al., 1999; Guo et al., 2003a).
Meteorological conditions (such as lower boundary layer height and
lower horizontal wind speed) are usually controlling factors for more
pollutants accumulated in the winter.

Benzo[a]pyrene (BaP) was themost abundant PAHs, whichwere 4.9
and 1.0 ng/m3 on average, accounting for 10.7% and 9.1% to the total
quantified PAHs in winter and summer, respectively. It is usually used
as the marker for the carcinogenic risk assessment. The level in most
of the GZ samples was higher than the air quality guideline set by
World Health Organization (WHO) (1.0 ng/m3), suggesting the poten-
tial risk in this area.

Most organic speciationworks often focused on the 16 priority PAHs
and n-alkanes with number of carbons ranged from 10 to 35 (n-C10–n-
C35) in China. Compared with other studies conducted in GZ, our values
were close to the levels in the urban area (Feng et al., 2006) but slightly
higher than those in the colleges or high schools (Gao et al., 2012a)
(Table 2). In further, bothwere also comparablewith the average values
measured in different locations in PRD region (Guo et al., 2003a; Zheng
et al., 2011). Similar to the findings for OC and EC, the total concentra-
tions of PAHs and n-alkanes were much lower than those quantified
in other heavy-polluted northern Chinese cities (Duan et al., 2010; Liu
et al., 2008; Feng et al., 2006; Li et al., 2010a; Guo et al., 2009; Kong
et al., 2010). The highest level of n-alkane reached to 1685 ng/m3 in
Table 2
Comparison of the PAHs concentrations with previous studies in Guangzhou.

This study Bi et al. (2002) Li

PAHs Winter
PM2.5

Summer
PM2.5

April
PM10

July
PM10

An
PM

Urban Urban Urban(traffic) Urban Ur

FLO 0.30–8.67 0.45–0.95 0.13–0.27 0.05–0.30 0.
PHE 0.40–10.7 0.27–1.47 0.79–1.85 0.13–0.39 1.
ANT 0.54–1.38 0.41–0.71 0.08–0.29 0.02–0.06 0.
FLU 1.09–9.11 0.55–1.05 0.56–1.80 0.06–0.51 1.
PYR 1.10–9.00 0.56–1.08 0.70–2.30 0.07–0.63 1.
BaA 0.78–3.24 0.008–0.76 0.99–3.81 0.05–0.50 1.
CHR 1.05–6.23 0.49–0.85 NAa NA 2.
BbF 1.28–10.15 0.46–1.29 2.76–7.39b

-
0.32–1.38
-

2.
BkF 1.30–7.71 0.62–1.17 2.
BaF 0.87–2.52 LOD-0.93 0.17–0.82 0.02–0.14 NA
BeP 1.22–10.4 LOD-1.07 5.88–13.69 0.67–3.18 NA
BaP 1.18–17.6 0.56–2.25 3.74–15.38 0.52–2.81 2.
PER 0.85–1.60 0.60–2.15 0.73–2.08 0.08–0.51 NA
IcdP 1.11–8.13 0.81–1.17 6.50–18.95 1.06–4.74 2.
DahA 2.17–6.86 0.20–2.31 3.22–10.61 0.53–2.65 0.
BghiP 0.90–2.49 LOD-1.00 11.84–29.43 1.53–8.35 3.
COR 1.96–3.83 0.14–2.09 1.68–9.28 0.22–1.69 NA

a NA: not available.
b Represents as BbF + BkF.
c Only mean values were provided.
Beijing during the Spring Festival (Yao et al., 2009) which was at least
one magnitude higher than our levels. The concentrations in this
studywere also comparablewith thosemegacities located in the central
part of China such as Shanghai and Nanjing (Cao et al., 2013; Feng et al.,
2006; Wang and Kawamura, 2005), but higher than the background
areas such in Lulang of Tibet, Mount Taishan and Sanya (Chen et al.,
2014; Li et al., 2010b; Wang et al., 2015a).

The PAHs levels were lower in GZ than few worldwide developing
areas such as Mumbai (India) and Zonguldak (Turkey) (Abba et al.,
2012; Akyüz and Cabuk, 2009); however, were still higher than those
measured in the developed cities including São Paulo (Brazil), Tuscany
(Italy), Hamilton (Canada), Hiroshima (Japan), and many United States
regions and cities (i.e., Atlanta, Southern California, and Chapel Hill)
(Bourotte et al., 2005; Martellini et al., 2012; Zheng et al., 2009;
Eiguren-Fernandez et al., 2004; Pleil et al., 2004; Tham et al., 2008;
Anastasopoulos et al., 2012). GZ is one of the earliest developed cities in
China. The comparison represents that the proper environmental controls
and policies are still required to improve the air quality to this urban area.

3.3. Concentrations of phthalate esters

PAEs are one of the most abundant and ubiquitous organic com-
pounds in the environments. They were widely used in numerous con-
sumer products, such as household and industry products (Myridakis
et al., 2015). As a class of endocrine disruptors, PAEs may cause adverse
health effects. Previous studies have showed that dietary intakewas the
main source of exposure toDEHPbut it has been being focused in indoor
exposure already (Song et al., 2015; Guo and Kannan, 2011). However
PAEs are still rarely reported in the ambient monitoring. Six PAEs
(dimethylphthalate, DMP; diethyl phthalate, DEP; di-n-butyl phthalate,
DBP; butyl benzyl phthalate, BBZP; bis(2-ethylhexyl)phthalate, DEHP;
di-n-octyl phthalate, DNOP) and one plasticizer of di-2-ethylhexyl
adipate (DEHA) were detected and quantified in the GZ samples. The
total concentrations of PAEs ranged from 289.1 to 2435 ng/m3 and
from 102.4 to 1437 ng/m3, respectively, in winter and summer. Similar
PAEs levels were reported in PM2.5 and PM10 in Tianjin, but these were
lower than the data obtained in the indoor environments (Song et al.,
2015; Kong et al., 2013; Zhang et al., 2014). Indoor PAEs can be directly
emitted frommany kinds of household products. However, the sources
for outdoor PAEs are not well defined and their levels can be greatly
et al. (2006) Yang et al. (2010) Gao et al. (2012a)

nual
2.5

Annual
TSPc

Annual
TSPd

Winter
PM2.5

Winter
PM2.5

ban(Park) Urban Suburban Urbanc Rural (School)c

2 ± 0.1 0.1 ± 0.1 0.09 ± 0.07 0.04 0.03
6 ± 0.9 1.1 ± 1.4 0.8 ± 0.9 0.15 0.12
2 ± 0.1 0.1 ± 0.1 0.09 ± 0.09 0.08 0.07
5 ± 1.4 1.7 ± 2.3 1.2 ± 1.4 0.47 0.73
6 ± 1.6 1.6 ± 2.1 1.2 ± 1.3 0.43 0.63
4 ± 1.3 0.8 ± 1.1 0.6 ± 0.8 0.71 0.46
7 ± 2.3 1.6 ± 1.9 1.2 ± 1.4 1.11 1.17
6 ± 2.1 4.2 ± 3.7 4.0 ± 3.3 1.99 2.08
7 ± 2.3 1.0 ± 0.9 1.0 ± 0.8 1.38 1.69

NA NA NA
NA NA 1.81 1.82

3 ± 2.1 1.6 ± 2.0 1.4 ± 1.5 1.16 1.14
NA NA NA

7 ± 1.9 2.5 ± 2.1 2.5 ± 1.9 3.12 2.26
3 ± 0.4 0.3 ± 0.3 0.3 ± 0.2 0.37 0.21
1 ± 2.2 2.6 ± 2.3 2.5 ± 1.8 1.94 1.59

NA NA 0.64 0.54
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affected by equilibrium partition in gas and particle phases. Fig. 2
demonstrates the seasonal distributions and compositions of the PAEs.
In winter, DBP was the most dominant which accounted for 61% of the
total quantified PAEs, followed by DEHP. Similar distribution pattern
was observed on the studies conducted in Tianjin and Norway (Zhang
et al., 2014; Rakkestad et al., 2007). DEHP is mainly used mainly as a
plasticizer for polyvinyl chloride (PVC) which contains in ca. 80% of
the phthalates products in China (Meng et al., 2014). DBP is also one
of themostwidely used phthalates globally. A rapid growth of their con-
sumptions has been showed (Gao and Wen, 2016). Compared with
DEHP, DBP has a longer half-life in the atmosphere and has higher
vapor pressure (7.3 × 10−5 VS 9.8 × 10−8) (Salgueiro-González et al.,
2015). Municipal garbage compressing and sewage, involving a high
quantity of plastic household products, is one of the potential sources
for urban phthalates (Meng et al., 2014).

High concentrations of DBP, DEHP, and DNOP were reported in the
Bulgarian homes as well (Kolarik et al., 2008). The outdoor levels
could be partly attributed to the widespread uses of the household
products due to the air exchanges (Zhang et al., 2014; Weschler,
1980). In summer, DBP was also predominant, accounting for 50% of
the total quantified PAEs. External painting material on the building is
a potential source for the outdoor PAEs (Guidotti et al., 1998). Due to
their potential impacts on human health and abundant in particle,
further researches on their sources identification are required.
Fig. 2. Distribution (a) and composition (b)of n-al
3.4. Source characterization

OC fractions are critical which can be used to source apportionment.
Based on the source profiles shown in the literatures (Sheesley et al.,
2003; He et al., 2008; Zhang et al., 2008; Yu and Yu, 2011), Chemical
mass balance (CMB) 8.2 model was used to analyze the contributions
of OC sources. The results demonstrated that coal combustion, vehicle
emission, cooking, and SOC formation were the four major pollution
sources in GZ (Fig. 3). Dissimilar with the findings in most northern
Chinese cities, there was no significant increase of contribution from
coal combustion in winter as coal is not necessary to be used as fuel
for residentialwarming. Biomass burningwas appointed as a less signif-
icant contributor (b10%) compared with other pollution sources, its in-
fluences was still greater in winter.

Organic markers were used to evidence the source characterization
for OC. Similar seasonal and bimodal distributions were observed for
n-alkanes homologs (Fig. 2). The concentrations of higher carbon num-
ber (n-C24-n-C33) accounted for 69.1% on average of the total quantified
n-alkanes. Few important indices were efficient tools to identify the
potential source for n-alkanes. Such as the carbon maximum number
(Cmax; the n-alkane exhibiting the highest concentration among the ho-
mologs) is generally used to distinguish biogenic from anthropogenic
sources (Simoneit, 1999; Simoneit and Mazurek, 1982). The carbon
preference index (CPI; the relative quantities of odd/even carbon
kanes, PAHs and PAEs inPM2.5 in Guangzhou.



Fig. 3. Sources contributions of OC in PM2.5 in Guangzhou.
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number n-alkanes) has been also used for the same purpose. The
n-alkanes that originate from vascular plants waxes typically exhibit
high values for the CPI (CPI NN 1), that is inductive of a strong odd
over even carbon number preference. In comparison, the CPI values
for vehicle emissions and other anthropogenic sources, in contrast, are
close to unity (CPI≈ 1) (Kavouras et al., 1999).

In addition, the contribution of wax n-alkanes (% wax Cn) can be
used to evaluate the contributions of biogenic versus anthropogenic
sources. Higher % wax Cn values indicate greater contributions from
biogenic sources (Bi et al., 2003; Wang and Kawamura, 2005). And the
odd to even predominance (OEP) ratio was used to supporting the exis-
tence of odd to even predominance. Our previous paper demonstrated
the calculation equations for those indices (Wang et al., 2015a).

Table 3 summarizes these indices calculated for the GZ sample sets.
The Cmax was n-C31 in most of the samples, followed by n-C29 in both of
summer and winter. Higher Cmax values (i.e., n-CN26) can be ascribed to
the shedding of epicuticular waxes by terrestrial plants while lower
Cmax values are linked to anthropogenic sources. The results reflect
that besides vehicular emission, epicuticular wax is also an important
contributor to the n-alkanes in GZ. It is also worth noting that odd-to-
even carbon number (2.0 and 1.6 in winter and summer, respectively)
was predominance at OEP31, further supporting that plant wax contrib-
uted to the organic fraction.

The CPI1 for the full range of n-alkanes ranged from1.1 to 1.7with an
average of 1.3 and from 1.0 to 1.3 with an average of 1.1 in winter and
summer, respectively. The variations of CPI1 among the samples can
be ascribed by different mixing of pollution origins such as petroleum
residues and vascular plant wax. The petrogenic CPI2 and biogenic
CPI3 values indicate that organic lipid from leaf epicuticular waxes is
the predominant source for the heavier n-alkanes in winter whereas
Table 3
Indices of n-alkanes and diagnostic ratios of PAHs in PM2.5 in Guangzhou.

Winter Summer

Average (range) Average (range)

Cmax C29 and C31 C29 and C31

CPI1(C14–C40)a 1.3(1.1–1.7) 1.1(1.0–1.3)
CPI2(C14–C24)a 0.8(0.5–1.3) 0.7(0.6–1.1)
CPI3(C25–C40)a 1.5(1.2–2.0) 1.1(1.0–1.3)
waxCn% 17.3% (9.3–28.7%) 12.0% (8.4–16.6%)
OEP31b 2.0(1.4–3.6) 1.6(1.3–2.0)

ANT/(ANT + PHE) 0.37(0.09–0.58) 0.47(0.32–0.61)
BaA/(BaA + CHR) 0.39(0.29–0.43) 0.11(0.02–0.15)
IcdP/(IcdP + BghiP) 0.65(0.53–0.77) 0.58(0.51–1.0)
Flu/(Flu + PYR) 0.49(0.43–0.52) 0.49(0.48–0.50)
BbF/BkF 1.1(0.89–1.58) 0.84(0.74–1.10)
BaP/BghiP 3.3(1.2–12.6) 1.1(0.75–2.68)

a Whole range for n-alkanes: CPI1 =∑ (C15–C39)/∑ (C16–C40), Petrogenic n-alkanes:
CPI2 = ∑ (C15–C25) / ∑ (C14–C24), Biogenic n-alkanes: CPI3 = ∑ (C25–C39) / ∑ (C26–
C40).

b OEP31 = [(Cn + 6Cn + 2 + Cn + 4) / (4Cn + 1 + 4Cn + 3)] (−1) n+ 1, n = 31.
large contributions from vehicle emission to lighter n-alkanes in both
winter and summer. The average of % wax was 17.3% (ranged from 9.3
to 28.7%) and 12.0% (ranged from 8.4 to 16.6%) in winter and summer,
respectively. The percentages were comparable with the range of 11.3
to 27.7% (average 18.5%) measured in Qingdao in winter (Guo et al.,
2003b). Both of the n-alkane indices suggest that the anthropogenic
activities were dominant for the contributions of n-alkanes but with
some extent from terrestrial plants.

No obvious seasonal differencewas shownon the PAHsdistributions
(Fig. 2). In winter, benzo[b]fluoranthene (BbF), dibenzo[a,h]anthracene
(DahA), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF) had
slightly higher compositions to the total quantified PAHs (34%), where-
as higher proportions of benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene
(IcdP), perylene (PER), benzo[ghi]perylene (BghiP) were found in sum-
mer (33%). The high compositions of IcdP and BghiP in both seasons
suggest significant contribution from vehicle emission (Smith and
Harrison, 1998), and additionally with tracers for gasoline-fueled
vehicle emission (i.e., BaP and DahA) (Miguel et al., 1998; Marr et al.,
1999). The higher proportion of BkF in winter might representmore in-
fluences from coal combustion from regional transport (Ravindra et al.,
2008). BeP, BaP andDahA can be originated from the industrial chimney
emission in Guangdong province. The co-existences of phenanthrene
(PHE) and fluoranthene (FLU) also proved the contributions from the
biomass burning. Diagnostic ratios of few atmospheric PAHs have
been used to identify potential pollution sources (Cotham and
Bidleman, 1995; Lohmann et al., 2000; Yunker et al., 2000) which
were calculated and summarized in Table 3. The ratios of anthracene
(ANT)/(ANT + PHE) were 0.37 and 0.47 on average in winter and
summer, respectively, indicating that the significant contributions
from combustion sources such as petroleum and coal. The ratios of
BaA/(BaA + chrysene (CHR)) were 0.39 and 0.11, respectively, in win-
ter and summer. The higher values suggested that more wood, grass,
and coal burning and diesel combustion activities were influenced in
winter while petroleum was the major pollution source in summer.
The ratios of IcdP/(IcdP+ BghiP) were N0.5 in all of the samples, prom-
ising that burning of grass and wood and coal combustion were signifi-
cant in GZ as well. Higher BaP/BghiP value was obtained in winter than
that in summer, revealing more contributions of coal burning in cold
season, potentially from regional transportation from northern areas.
The ratios of FLU/(FLU + PYR) and BbF/BkF also demonstrated that
vehicle emission was the main pollution sources in GZ, especially in
summer. Source identification were further performed by computing
additional diagnostic ratios, including FLU/PYR, IcdP/BghiP, and BaP/BeP
with laboratory generated source in GZ (i.e., rice straw and sugar cane
burning, vehicle emission, and bituminite coal combustion) and
ambient samples (Fig. 4). In comparison of the ratios of FLU/PYR, the
rice straw and sugar cane burning were potential sources in both sea-
sons. IcdP and BghiP are the two organic tracers widely used for the
source apportionment. We found that the ratio of IcdP/BghiP in GZ
was close to that of the rice straw and sugar cane burning in summer,
butmore similarwith the value of bituminite coal combustion inwinter.
The ratio of BaP/BeP also sugge.sted the combined influences from the



Fig. 4. Scatter diagrams for the ratios of FLU/PYR (a), BaP/BeP (b) and IcdP/BghiP (c) in PM2.5 in Guangzhou.
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sugar cane burning and vehicle emission. Besides, Fig. 5a demonstrates
the ratio of BghiP/EC to IcdP/EC of the source and ambient samples. The
ambient samples were in line with the rice straw and sugar cane. Based
Fig. 5. Ratio-ratio diagrams for BghiP/EC to IcdP/EC (a) and h
on these diagnostic ratios, we conclude that vehicle emission, biomass
burning, and coal combustions were the significant pollution sources
in GZ.
opane/EC to norhopane/EC (b) in PM2.5 in Guangzhou.
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Petroleum organic tracers of hopanes including 17α(H)-22,29,30-
trisnohopane, 17α(H)-21β(H)-30-norhopane, and 17α(H)-21β(H)-
hopane were quantified in this study. Fig. 5b illustrates the ratio of
hopane/EC to norhopane/EC in the GZ ambient samples, additional
with the spectrum from the source samples. The average ratios were
found to be 0.91 and 1.76 ng/μg, respectively, for coal combustion and
vehicle emission source-dominated samples collected in Zhujiang tun-
nel (He et al., 2008). The ambient ratios obviously were higher than
that of coal combustion and were more comparable with value of the
tunnel samples, promising that both hopane and EC can be originated
from vehicle emission. The ΣHopanes/EC in this study was 0.75 ng/μg,
compared with 1.14 ng/μg from the fresh vehicle emission dominated
samples (He et al., 2008), much lower than the vehicle emission by
Dai et al. (2015). The lower values might suggest a certain degree of
the air aging in the ambient.

4. Conclusion

Organic tracers are the efficient and supportive tools for source
apportionment. Good agreement with the receptor model and the
organic indices and diagnostic ratios evidenced that anthropogenic
sources such as vehicle emission, biomass burning and coal combustion
were the major pollution sources in urban GZ city. Biological sources of
organic lipid from leaf epicuticular waxes also contributed to the PM2.5.
Determination and quantification of more potential source markers are
benefit for the source characterizations. Though there were minor
differences in the source contribution, but the main pollution sources
were consistent between winter and summer. This phenomenon is
quite dissimilar with most northern cities in China. Few organics, such
as PAHs and PAEs, have strong environmental and health impacts to
the urban cities.
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