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Abstract Loess is an important dust component of airborne particles in Northwestern China. Knowledge
of the chemical composition, mixing state, and processing of loess particles in urban plumes is still limited.
Urban loess particles were characterized using a single‐particle aerosol mass spectrometer. To understand
sources and processing of loess particles, source samples from the road, urban background, soil,
construction, and biomass burning ash were collected in the urban areas and characterized. Loess particles
were determined as a kind of calcium‐silicate‐rich ones, which were internally mixed with calcium,
silicates, potassium, elemental carbon, organics, ammonium, sulfate, and nitrate. Road and soil were major
sources of loess particles. Among the aged loess particles, the average peak areas of taken‐up nitrate and
sulfate were comparable to that of (Fe+Ca+Al). Diurnal uptake profiles of chloride, sulfate, oxalate, and
nitrate on loess particles were analyzed. The nocturnal elevation of chloride occurred significantly due to the
uptake of HCl (g). Nighttime nitrate formation occurred prevalently under high relative humidity conditions
via the heterogeneous hydrolysis of N2O5. The nighttime enrichment of oxalate, which is a marker for
aqueous‐formatted secondary organic aerosol, was also found. Besides the nighttime chemistry, the daytime
photochemical activities were also a drive for the elevations of sulfate, nitrate, and ammonium.
Conclusively, the processing of loess particles in polluted urban plumes significantly altered their chemical
composition and mixing state.

1. Introduction

Mineral dust particles are lofted from deserts or semiarid areas into the atmosphere with an annual flux of
~2,000 Tg globally (Huneeus et al., 2011; Usher et al., 2003). Dust particles scatter and absorb solar radiation,
affecting the radiation budget of the Earth. Light‐extinction efficiency of dust particles strongly depends on
their physicochemical properties such as morphology, mineralogy, and mixing state, which vary among
regions and sources (Ginoux, 2017).

Dust particle could act as media for the atmospheric photochemical activities. Dust surface participates in
heterogeneous reactions, including ozone decomposition, nitrogen‐dioxide formation, and photolysis
(Cwiertny et al., 2008; Krueger et al., 2004). Dust particles could assist NO2 in oxidizing SO2 to sulfate during
the Chinese air pollution events (Cheng et al., 2016; He et al., 2014). Hygroscopic species could change
processed dust particles into droplets where Fenton reaction produces OH radical participating in
heterogeneous oxidation (Deguillaume et al., 2005; Gaston et al., 2017; Tobo et al., 2010). Therefore,
atmospheric processing of dust particles could shift the tropospheric oxidation capacity, enhance secondary
aerosol formation, and affect climate (Tang et al., 2017). Investigating dust processing in polluted urban
areas is essential to evaluating the impacts of aged dust particles on visibility, climate, and human health.

Loess is a type of aeolian dust from the Loess Plateau in Northwestern China (Wu et al., 2011). In urban areas
of Xi'an (Shaanxi Province, China), the concentration of fugitive loess was up to 66 μg/m3 (Cao et al., 2008; Li
et al., 2016; Zhang et al., 2010). When massive haze events occurred during January 2013, loess was up to
46.3% of the total PM2.5 (Huang et al., 2014). Studies have focused on the chemical composition and
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mineralogy of loess, but its processing in urban plumes is inadequately understood (Liu et al., 2004; Wang
et al., 2006; Wu et al., 2011).

Single‐particle mass spectrometers have been widely used for characterizing size‐resolved chemical compo-
sition and mixing state of ambient particles (Gard et al., 1997; Li et al., 2011; Zelenyuk et al., 2015). Dust par-
ticles from southern California (Silva et al., 2000), Saharan (Dall'Osto et al., 2010), and Asian outflow
(Sullivan, Guazzotti, Sodeman, & Prather, 2007) have been examined. In polluted urban areas, dust particles
in Mexico City (Moffet et al., 2008), Athens (Dall'osto & Harrison, 2006), and Beijing, Chongqing, and
Guangzhou in China (Chen et al., 2017; Li et al., 2014; Tao et al., 2011; Zhang et al., 2014) have been
reported. However, few of these online measurements converged on the atmospheric processing of
loess particles.

This study aims to characterize the processed, urban loess particles in Northwestern China. The ambient
loess particles were compared to the source samples (e.g., road, soil, loess, and construction dust) for studies
of origins and processing. Results from this study would improve our understanding of the evolution of loess
particles and our capability in assessing the impact on air quality, climate, and human health.

2. Materials and Methods
2.1. Field Measurement and Instrumentation

A single‐particle aerosol mass spectrometer (SPAMS) was deployed in an urban area of Xi'an from 26
September 2013 to 13 October 2013. The field observation site is located 10 m above the ground on the
rooftop of a building (108.89°E, 34.23°N; Chen et al., 2016). The technical description of SPAMS is available
elsewhere (Li et al., 2011). Briefly, SPAMS measures single‐particle chemical composition in a size range of
0.2–2.0 μm. The sampled particles pass through an aerodynamic lens and form a narrow beam for sizing. The
time of flight of particles crossing two prepositioned 532‐nm lasers is used to calculate the vacuum aerody-
namic diameter (Dva). Sized particles are then decomposed and ionized by a 266‐nm laser (2 mJ per shot) and
formed both positive and negative ions, which are then analyzed by a dual polarity time‐of‐flight mass spec-
trometer. Particulate size distribution is calibrated using the standard National Institute of Standards and
Technology (NIST)‐traceable polystyrene latex standard (Duke Scientific Inc., USA) before and after the
observation. In addition, trace gases (NOx, ozone, CO, and SO2) and meteorological parameters are also
recorded using instrumentation from Thermo Inc. and Vaisala (MAWS20), respectively. All the data were
collected and stored in local time (Beijing time, UTC+8).

2.2. Collection and Analysis of Source Dust Samples

The Xi'an city is located in a semiarid area where the dust could be lofted from the naked surfaces like roads,
farms, and naked surfaces in the city. As a rapid‐developing city, Xi'an had at least 3,000 work‐in building
yards in the urban area (Long et al., 2016). Therefore, a series of source samples, including soil, road, con-
struction, urban background, biomass burning (BB) ash, and authentic loess samples, were collected and
analyzed for source identification and comparison. Sixteen soil samples were collected from 16 farmland
locations near the city (see Table S1 in the supporting information for details). One soil sample was collected
at each site unless otherwise mentioned. Soil from the surface to a depth of 10 cmwas collected, and the sam-
ples were settled into a zip bag for cryostorage. Twenty‐five samples were collected on many urban roads,
including primary, secondary, and branch roads (Table S2). The samples of city background and construc-
tion dust were acquired from the Drum Tower (a historical landscape, 108.95°E, 34.27°N) and a constructing
yard (109.09°E, 34.19°N), respectively. The road, city background dust, and construction samples were col-
lected from the surface dirt. BB ash samples were acquired from the chimney of a BB boiler located in the
Chengtai Paper Industry (120.53°E, 31.24°N). The authentic standard loess (Product ID GBW07454 GSS‐
25) was purchased from the Chinese Standard Material Center.

All samples were dried at room temperature before resuspension for resampling and laboratory analyses. All
soil samples were mixed with a blender, and the mixture was sieved through Tyler 30, 50, 100, 200, and 400
mesh sieves. Five grams of the sieved mixture was placed in a 1‐L extraction bottle. Zero air was pumped in
the bottle at a flow rate of 5 L/min; then the soil powder was blown to a 500‐L chamber formixing. The resus-
pended particles were then analyzed using a SPAMS. The resuspension system was cleaned after use to
avoid contamination.
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2.3. Data Analysis

During the field observation, 137,748 particles with validated mass spectra were collected. A query combina-
tion of Ca+ (m/z 40), [SiO2]

− (−60), and [SiO3]
− (m/z −76) was used to search the SPAMS data set for the

dust particles. The query resulted in 46,834 particles (34.0% in number). Since a proportion of particles could
not be assigned to dust (e.g., BB particles), thus a clustering algorithm (Adaptive Resonance Theory Neural
network, ART‐2a) was applied to resolve particle types from the query (Song et al., 1999). A learning rate of
0.05, a vigilance factor of 0.70, and 20 iterations were used. Four unique particle clusters, namely, an aged BB
(34%), a Ca‐ECOC type (4%), a Ca‐EC type (4%), and a major Ca‐Si type (58%; Figure S2), were resolved. The
major Ca‐Si particles, which were mainly composed of Ca+, SiO2

–, SiO3
–, and PO3

–, were assigned to dust.

3. Results and Discussion
3.1. Characterization of Ambient and Source Dust Particles

Figure 1 shows the average mass spectra of ambient dust, urban background, soil, construction, road, BB
ash, and the authentic loess. The assignment of ions in each mass spectrum is shown in Table S3.
Coefficient of determination (R2) was calculated using the relative ion peak areas among different mass spec-
tra. Relative peak areas of sulfate (m/z –80 and –97) and nitrate (m/z –46 and –62) were excluded because
their strong ion intensity could cause significant bias on the R2 calculation. As shown in Table 1, the mass
spectra of ambient dust particles had high R2 values (0.92, 0.89, and 0.88) with those of road dust, soil,
and standard loess, respectively. Ambient dust was also similar to urban background dust (R2 = 0.57) and
construction dust (R2 = 0.63). The source samples had good correlations with each other. For example,
authentic loess was identical to soil (R2 = 0.99) and road dust (R2 = 0.94). These results suggest that road
and soil dust were the principal sources of ambient dust particles. As a result of this, we used the term “ambi-
ent loess” to describe the ambient dust particles in Xi'an.

Among multiple mass spectra, the relative intensity of the major ions varied, as shown in Figure 1a. The
ambient loess had a K+/Ca+ ratio of 10, which was consistent with a previous study in Xi'an (Chen et al.,

Figure 1. Average positive (a) and negative (b) mass spectra for ambient loess, urban background dust (20,367 particles), road dust (15,673 particles), construction
(5,076 particles), biomass burning ash (7,832 particles), local soil (10,672 particles), and authentic loess (3,547 particles).
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2016). The K+/Ca+ values of urban background dust, soil, construction, loess, and road particles were 12, 15,
35, 10, and 11, respectively. The result is different from previous single‐particle studies. For example, K+/Ca+

values of dust were 1.0 in Beijing (Li et al., 2014), 0.75 in Shanghai (Yang et al., 2009), ~2 for Asian dust
(Furutani et al., 2011), and ~1.3 for Sahara dust (Dall'Osto et al., 2010). There are several possible reasons.
First, the ion peak areas could be affected by chemical species in the particle matrix. Second, variations of
laser energy might vary ion peak areas. Third, dust mineralogy also influenced laser desorption/ionization
efficiency (Allen et al., 2000; Bhave et al., 2002; Gross et al., 2000). Hereby, we recommend a K+/Ca+ of 10
for loess particles in SPMS studies.

Elemental Carbon (EC) components (C2
‐
–C6

‐) were also abundant in ambient loess, urban background, bio-
mass ash, and authentic loess. EC was ordinarily from combustion including diesel, gasoline, and biomass
(Ault et al., 2010; Gaston et al., 2013; Spencer & Prather, 2006; Toner et al., 2008). Loess particles could coa-
gulate with combustion species (more discussion in section 3.2 below), as has been reported in Shanghai
(Yang et al., 2009) and on Sahara dust particles (Dall'Osto et al., 2010). Soil samples were rich in EC because
straw burning has been prevalent in the Guanzhong Basin for thousands of years, and burning residues were
well mixed with soil. Additionally, in the construction dust, high signal of O– (m/z –16), OH– (m/z –17),
[SiO2]

– (m/z –60), [SiO3]
– (m/z –76), [CN]−, and [CNO]– were found because concrete powder contains

metal oxides such as CaO, FexOy, Al2O3, and MgO (Goodman et al.,
2001). When broken up under laser, these metal oxides could cause high
signals of [O]– and [OH]–.

A ternary plot was composed to evaluate the secondary uptake on loess
particles by comparing with source samples (Sullivan, Guazzotti,
Sodeman, & Prather, 2007). In the ternary plot, the sum‐up average peak
areas of (Fe+Ca+Al) was used to represent the intensity of the mineral
species, sulfate, and nitrate to indicate that of secondary species. If a kind
of dust particles had insignificant secondary uptake, they should be close
to the (Fe+Ca+Al) vertex; otherwise, the positions of the particle type
should be close to the vertexes of sulfate and nitrate. As shown in
Figure 2, construction, authentic loess, BB ash, and soil samples hadmini-
mum uptake of sulfate and nitrate, while road and urban background
samples had large amounts of sulfate and nitrate. For ambient loess parti-
cles, dramatic uptake of sulfate and nitrate was observed with the mass
ratios of nitrate:sulfate:(Fe+Ca+Al) being 53%:18%:29 %, while the ratios
in authentic loess were 2%:2%:96%. These results suggest that nitrate and
sulfate uptake significantly altered the chemical composition of airborne
loess particles.

Figure S3 shows the unscaled size distribution of ambient particles and
source samples. Note that all the source dust samples were resuspended.
Thus, their size distribution could be different from the real distributions
(Allen et al., 2000; Qin et al., 2006). The ambient loess particles had a wide
distribution and peaked around 0.64−0.72 μm while the source profiles

Table 1
Coefficients of Determination (R2) Between Mass Spectra of Ambient Loess Particles and Source Samples

Ambient Urban Bkd Soil BB ash Construction Loess Road

Ambient 1.00
Urban Bkd 0.57 1.00
Soil 0.89 0.50 1.00
BB ash 0.80 0.76 0.72 1.00
Construction 0.63 0.55 0.71 0.57 1.00
Loess 0.88 0.50 0.99 0.72 0.71 1.00
Road 0.92 0.67 0.96 0.83 0.72 0.94 1.00

Note. BB biomass burning; Bkd = background dust.

Figure 2. Ternary plot of the average peak area of sulfate, nitrate, and (Fe
+Ca+Al) of ambient loess, city background dust, soil, road dust, and bio-
mass burning (BB) ash. The vertex of Fe+Ca+Al suggests that nitrate is
100% in this position.
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had sharp size distributions when Dva was larger than 0.50 μm. Soil dust peaked at 0.72 μm, and standard
loess, road, and BB ash peaked at 0.74 μm. These results suggest that the atmospheric processing majorly
changed the size distribution of loess particles with Dva <0.7 μm.

3.2. Mixing State Analysis

Mixing state of ambient loess particles is shown in a digital average mass spectrum (Figure 3). Each ion peak
represents its fraction in the particle matrix, and the color maps indicate the corresponding ion peak area
ranges (Sullivan, Guazzotti, Sodeman, & Prather, 2007). Among all the species, K+ was the most abundant
with a ratio of 1.00, followed by Ca+ (0.97) and Na+ (0.62). Aluminum ions such as Al+ (m/z 27) and [AlO]+

were detected with ratios of 0.13 and 0.14, respectively. [CaO]+/[Fe]+ ion has a fraction of 0.05. NH4
+(m/z 18) and [K2Cl]

+ (m/z 113 and 115) were observed. Low fractions of organic ion markers, such
as [C4H3]

+ (m/z 51), [C5H3]
+ (m/z 63), and [C11H8]

+ (m/z 140), were also detected. In the negative mass
spectra, nitrate was predominant, along with [PO3]

−, [CN]–, and [CNO]–. Mineral components, such as
[SiO2]

−, [SiO3]
−, [Si2O3]

−, and [Si3O4]
−, were also present. Overall, the urban loess particles were a mix-

ture of mineral species, organic species, sulfate, chloride, and nitrate. Moreover, the result is consistent
with what was previously found (Chen et al., 2016).

The atmospheric aging process could alter mixing state of loess particles. In this section, comparisons
between ambient loss particles and source samples were conducted to illustrate the particulate aging
degrees. Distributions (mixing ratio and the corresponding ion intensity) of markers, that is, [HSO4]

–,
[NO3]

–, [NH4]
+, [CNO]–, [Cl]–, [PO3]

–, and oxalate on both ambient loess particles and source samples,
are shown in Figures 4 and 5, respectively. Sulfate, nitrate, and ammoniumwere abundant in not only ambi-
ent loess particles but also the urban background samples. Respectively, 84%, 97%, and 51% of urban back-
ground particles contained sulfate, nitrate, and ammonium. As expected, the urban background dirt is a sink
of ambient Particulate Matter (PM) due to high mixing ratios of secondary species. As shown in Figure 5,
ambient loess particles contained the most vigorous relative ion intensity of [HSO4]

–, [NO3]
–, and [NH4]

+,
followed by urban background samples. Additionally, road dust was also both a source and a sink of urban
PM, containing strong signals of [HSO4]

–, [NO3]
–, and [NH4]

+. These results also suggest that urban back-
ground particles were also a sink for atmospheric ammonia.

[CNO]‐ is commonly used as a marker of organic nitrogen species in single‐particle studies (Angelino et al.,
2001). In the atmosphere, organic nitrogen species are represented by RNO2 species when their organic pre-
cursor reacted with NOx (Seinfeld & Pandis, 2016). Organic nitrogen species could also be emitted from BB
(Silva et al., 1999) or biological activities (Creamean et al., 2016). The mixing fractions of [CNO]–were in the
order of road (0.86) > soil (0.84) > loess (0.77) > urban background (0.51) > BB ash (0.41) > construction
(0.40). This result indicates that CNO− was widely distributed in multiple sources. For example, the soil

Figure 3. Average digital mass spectra of ambient loess particles in Xi'an.
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organic nitrogen could be frommicroorganisms and humic‐like substances, while that in the road and urban
background dust could be from combustion or photochemical activities (Dall'Osto et al., 2010). During the
atmospheric processing, [CNO]– on ambient loess particles decreased dramatically due to the
photochemical removal, that is, photolysis (Healy et al., 2012).

Cl− can be primarily released into the atmosphere via BB, biological activities, and waste incineration (Chen
et al., 2016; Zhang et al., 2011). HCl(g) can then be formed when the primary chloride reacted with gaseous
acidic species such as H2SO4 (g) and HNO3 (g; Moffet et al., 2008). Uptake of HCl (g) can be a secondary

Figure 4. Mixing fraction of major ion species in different types of dust particles.

Figure 5. Normalized peak area for ion markers in each source cluster. Amb stands for ambient, Ub for urban back-
ground, Rd for road, BBA for biomass burning ash, Const for construction, and Loe for loess.
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source of Cl− on dust particles. The mixing ratio of Cl− followed the order of road (0.85) > soil (0.84) >loess
(0.77) > construction (0.69) > urban background (0.33)> BB ash (0.27) > ambient (0.18). The high mixing
ratio of Cl− in construction particles is probably due to oxides in concrete, such as CaO, Al2O3, and MgO,
which strongly absorb HCl (g; Goodman et al., 2001). The low mixing ratio of Cl− in ambient loess was
due to the removal of HCl (g) when Cl− reacted with H+ (Seinfeld & Pandis, 2016).

PO3
− is an important component of soil dust or from the biological residues (Creamean et al., 2013). [PO3]

−

had similar fractions in the road (0.71), soil (0.76), BB ash (0.76), and the authentic loess (0.75). However, the
distribution of PO3

‐ in ambient loess was much lower than that of in source samples, which could be caused
by the matrix effect in single particle studies (Gross et al., 2000). Oxalate is commonly used as a marker of
secondary organic aerosol (SOA) formed in the aqueous phase (Ervens et al., 2011), but it could also be from
BB (Falkovich et al., 2005). Oxalate was widely distributed in soil and loess due to fungi activities (Dutton &
Evans, 1996). To sum up, uptake of secondary species on loess particles could alter their physicochemical
properties significantly when crossing urban plumes. In the next section, the diurnal evolution of loess par-
ticles was illustrated.

3.3. Diurnal Profile of Secondary Species on Dust Particles

Uptake of nitrate, sulfate, and chloride on dust particles has been reported in literature (Moffet et al., 2008;
Sullivan, Guazzotti, Sodeman, Tang, et al., 2007; Sullivan, Guazzotti, Sodeman, & Prather, 2007; Sullivan &
Prather, 2007). In this work, we investigated the diurnal uptake of nitrate, sulfate, ammonium, and chloride
on loess particles. Since the arbitrary relative sensitivities factor was unavailable for SPAMS, we used ratios
of ion peak area of SO4

‐, NO3
‐, NH4

+, and Cl‐ in dust particle data set to illustrate the quantities of these spe-
cies, and the peak area ofm/z 40 (Ca+) was used to normalize the shot‐to‐shot variations of the laser energy
absorbed by each dust particle (Sullivan, Guazzotti, Sodeman, & Prather, 2007). During the observation,
wind was mostly from south of the sampling site (Figure S1) with an average speed of 1.5 m/s. Thus, the col-
lected loess particles were mainly locally aged. Therefore, when discussing diurnal profiles of secondary
uptake, it is worth to mention the diurnal behavior of relative humidity (RH). As shown in Figure 6a, RH
remained at high levels with a median value of ~80% in the nighttime and decreased to 40% in the afternoon
(14:00, local time, UTC+8, and hereafter). RH was sufficiently high during the nighttime that could change
the hygroscopic species such as (NH4)2SO4, NH4NO3, and NH4Cl into droplets, providing media for aqueous
reactions on loess particles (Tobo et al., 2010). The temporal trends of [NO3]

–/Ca+ , [HSO4]
–/Ca+, Cl–/Ca+ ,

[NH4]
+/Ca+ , and Oxalate/Ca+ are available in Figure S4. As expected, [NH4]

+/Ca+ had good correlations
with [HSO4]

–/Ca+ and [NO3]
–/Ca+ with R values of 0.67 and 0.86 respectively.

As shown in Figure 6, [NO3]
–/Ca+ had an early morning peak around 4:00; this peak possibly occurred via

NO3/N2O5 +H2O pathway on dust particles (Wang, Lu, et al., 2017; Zhang et al., 2015). In the daytime,
[NO3]

–/Ca+ had a noon peak (12:00) driven by the uptake of HNO3 (g) produced via gas phase OH+NO2

pathway. HNO3 (g) could convert to Ca (NO3)2 when reacting with CaCO3 on the loess particles (Sullivan
et al., 2005). The absorptive condensation of NH4NO3 (g) could also lead to the [NO3]

–/Ca+ nitrate elevation.
A diurnal arising of particulate NH4NO3 had been observed in a similar season (Wang, Huang, et al., 2017).
In a previous study, an elevation of NH4NO3 particle was observed at noon in California, USA, where the air
stagnation was also common (Qin et al., 2012). Additionally, the diurnal profile of [NH4]

+/Ca+ was consis-
tent with that of [NO3]

‐/Ca+ in the daytime, suggesting that the gas/particle partitioning of NH4NO3 was the
major pathway for uptake of nitrate and ammonium.

Uptake of H2SO4 (g) on dust particles has been studied elsewhere (Tang et al., 2016). As shown in Figure 6c,
the diurnal profile of [HSO4]

–/Ca+ showed peaks at 5:00 and remained at high levels until 16:00. The 5:00
peak could be produced by the heterogeneous oxidation of S (IV) to S (VI) by H2O2 or other hydroperoxide
species when relative humidity was high (Tang et al., 2016; Usher et al., 2002). [HSO4]

–/Ca+ remained high
after the morning rush hours when the concentration of NO2 was high. SO2 and NO2 can rapidly react with
each other on the dust surface to form sulfate (He et al., 2014). In the daytime NH4SO4 produced fromH2SO4

(g) and ammonia could be necessary for the afternoon peak of [HSO4]
–/Ca+.

The urban area of Xi'an is rich in gaseous and particulate chloride emitted from industry, waste incineration,
and BB (Chen et al., 2016). The gas phase HCl (g) could be generated from the reaction between chloride and
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strong acids such as H2SO4 (g) and HNO3(g) on the dust surface. Dust particles acting as a sink of HCl(g) in
the marine boundary layer have been reported, but no clear diurnal pattern was acquired due to limitations
of ship measurement (Sullivan, Guazzotti, Sodeman, Tang, et al., 2007). Cl–/Ca+ remained at high levels in
the dark possibly due to the uptake of HCl(g) and its reaction with CaCO3 as well as other metal oxides
(Sullivan, Guazzotti, Sodeman, Tang, et al., 2007). The diurnal Cl–/Ca+ decreased dramatically after 8:00
due to the removal of volatile HCl (g) as aforementioned (Faxon & Allen, 2013; Gard et al., 1998). Also,
the daytime uptake of HCl (g) could be weak because HCl(g) could be oxidized rapidly in the troposphere
(Finlayson‐Pitts & Pitts, 2000).

The diurnal condensation of oxalate on dust in the marine environment has been reported by Sullivan and
Prather (2007), and they also proposed that the gas‐particle phase partitioning of oxalic acid was important.
In this study, as shown in Figure 6g, Oxalate/Ca+ showed a three‐spike diurnal pattern peaking at 3:00, 5:00,
and 17:00. The aqueous oxidation of glyoxal by OH, H2O2, and other peroxides could drive the nighttime ele-
vation of oxalate in the dust droplets (Tang et al., 2017). The nighttime peak of oxalate has been observed by
Sullivan and Prather (2007), but they proposed that the peak was majorly caused by long‐range transport.
Moreover, the oxalate formation was controlled by aerosol acidity of dust particles (Ervens et al., 2011).
As shown in Figure 6c, oxalate became maximum when HSO4

–/Ca was the highest (R = 0.53; Figure S4).
Overall, to our best knowledge, this part is novel for reporting the diurnal uptake of nitrate, sulfate,

Figure 6. Diurnal profiles of (a) RH, (b) [NO3]
−/Ca+, (c) [HSO4]

−/Ca+, (d) [NH4]
+/Ca+, (e) Cl−/Ca+, (f) [C2H3O]

+/Ca+,
and (g) Oxalate/Ca+.
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semivolatile‐SOA, and aqueous SOA on loess, and we reveal that the nighttime chemistry was essential for
the nitrate and chloride uptake.

4. Conclusions

The atmospheric processing of loess particles in urban areas of Xi'an was studied by comparing the ambient
loess particles to the source samples collected from the urban background, road, soil, construction, BB ash,
and authentic loess. Road and soil were apportioned as the major sources of ambient loess particles. Urban
airborne loess particles were found to be significantly processed via the uptake of secondary pollutants such
as organics, sulfate, nitrate, and ammonium. The diurnal uptake behaviors of chloride, sulfate, and nitrate
were investigated. Both daytime and nighttime chemistry played essential roles on the secondary uptake on
loess particles. Heterogeneous hydrolysis of N2O5 was the major pathway for the elevation of nitrate in the
nighttime. Results from this study could be utilized in model studies to evaluate the impact of aged dust par-
ticles on human health, visibility, and air quality.
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