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Abstract
To insight the urban volatile organic compound (VOC) profiles and its contribution to ozone, four-time per day (8:00–9:00,
15:00–16:00, 19:00–20:00, and 23:00–24:00) off-line VOC samples were collected from 16th July to 28th July 2018 for a
summer investigation campaign over Xi’an, China. The diurnal variation was significant that the lowest TVOC concentrations
were observed in the midnight period (28.4 ± 25.6 ppbv) while the highest was shown in the morning (49.6 ± 40.1 ppbv). The
differences of total non-methane VOCs (TVOCs) between weekdays and weekend were also significant that the weekend
showed significantly high VOC levels than weekdays (p < 0.05) but did not lead to significant ambient O3 increase (p > 0.05).
Isopentane, a general marker for vehicle exhaust, showed descending concentrations from morning to midnight and good
correlation with vehicle numbers on road, indicating a potential source to the VOCs at this site. The results from PMF proved
that vehicular exhaust was the largest source to the VOCs in this study (64.4%). VOC categories showed a reverse sequence in
abundance of concentrations and OFP contributions that alkenes showed the highest OFPs althoughwith the lowest abundance in
TOVCs due to their high reactivity in photochemical reactions. High OFPs from ethylene and isopentane indicated that vehicular
emissions could be the largest potential OFP source in this site. OFPs from isoprene (from 1.85 to 13.4 ppbv) indicated that
biogenic VOCs should not be negligible in urban Xi’an city when controlling O3 pollutants. Comparison of two OFP methods
was conducted and MIR method was proved to be more reasonable and scientific in summer Xi’an. Therefore, vehicular
emission, the largest contributor to ambient VOCs and also OFPs, as well as biological source should be priority controlled in
guiding VOC emissions and reducing O3 control policies.
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Introduction

As one of the fastest-growing economies (over 7% annual
GDP growth for the past 20 years) (NBSC 2018), China is

now suffering serious environmental pollution issues (Cai
et al. 2010; Cao et al. 2012). In recent years, episodes of ozone
(O3) concentrations exceeding 120 ppbv occur frequently dur-
ing summer time especially in megacities such as Beijing,
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Shanghai, Guangzhou, and Xi’an (Shen et al. 2016; Tan et al.
2018; Li et al. 2019). Better understanding of the causes of
elevated ozone in China is important for developing effective
emission control strategies.

VOCs are widely known as precursors of ozone in the
presence of nitrogen oxides (NOx) and sunlight (Kumar
et al. 2017; Li et al. 2017). It has been widely proved that
the photochemical reactions of VOCs play an important role
in the formation of ground-level O3 (Duan et al. 2008; Li et al.
2017; Wang et al. 2017). United States Environmental
Protection Agency (USEPA) has particularly defined 57
VOC species as critical ozone precursors to in controlling
O3 problem (Shao et al. 2016; USEPA 1998). Additionally,
some VOC species such as benzene, toluene, and 1,3-butadi-
ene have been evidenced to be air toxics for their adverse
effects on human health (Kampa and Castanas 2008).

Emissions of large amount of anthropogenic VOCs are prev-
alent in urban areas due to the large number of vehicles and
massive industries (Hwa et al. 2002; Lee et al. 2002).
Consequently, the VOCs in urban atmosphere maintained at
very high level in these years (Hui et al. 2018; Yuan et al.
2013) Li et al., 2015. Numerous studies indicated that the com-
position of atmospheric VOCs in urban area was complex and
derived from multiple sources, including vehicle exhaust, pet-
rochemical industry emissions, fossil fuel volatilization, the use
of chemical solvents (i.e., coating, painting, etc.), and biomass
combustion (An et al. 2017; Tan et al. 2018; Xue et al.
2017)Kountouriotis et al., 2014. However, significant varia-
tions were existed between VOC compositions and sources in
different regions. Zou et al. (2015) reported that aromatic hy-
drocarbons contributed 35% to total non-methane hydrocar-
bons in Beijing but as high as 54% in Guangzhou. The results
in Zhang et al. (2016) showed that aromatic hydrocarbons in
northern China were affected mainly by biomass/biofuel/coal
burning, whereas sites in southern China were affected mainly
by traffic-related emissions and/or industrial emissions.

Previous researches on VOCs in China mostly focused on
developed regions, such as Beijing-Tianjin-Hebei region,
Yangtze River Delta, and Pearl River Delta (Duan et al.
2008; Wang et al. 2018; Yuan et al. 2010). Very few studies
were conducted in Guanzhong Plain although the air quality
there was one of the most severe regions and at the same time
being the largest economic output in Northwest China (Xu
et al. 2018). Xi’an, as the center city of Guanzhong Urban
Agglomeration and listed as top ten megacities in China, has
over 8 million population and 2.5 million vehicles (SPBS
2017). Xi’an has been long suffered from serious air pollution
(Shen et al. 2008, 2009, 2010, 2011, 2016); in summer, O3

was regarded as the primary pollutant in 70% of polluted cases
(Sun et al. 2019; Wang et al. 2012). According to the Chinese
National Monitoring Station, the 90% percentile of monthly
average O3_8h concentrations in 2017 and 2018 summer were
both over 200 μg m−3, which was exceeding the national

standards (GB3095-2012). However, researches on ambient
VOCs and their source apportionment are rare, leading to
many O3 modeling studies still using outdated VOC data
(Feng et al. 2016; Li et al. 2018). The crowed transportation
and booming industry (including automobile, petroleum
chemical, textile, manufacturing, and power plant) in Xi’an
collectively emitted a large number of VOCs to the atmo-
sphere. Some VOC source profiles have been reported in lit-
erature including vehicle exhaust and biomass burning, but
owing to the limited VOC source apportionment results, O3

pollutant control during summer time was inefficient in recent
years (Cheng et al. 2018).

In this study, the ambient VOCs at a typical sampling sta-
tion in Xi’an were monitored from 16th July to 28th July 2018
using modified SUMMA canister method. Four samples per
day make it possible to get diurnal variations of VOCs. The
objectives of this study are to (1) detect the contribution of
ambient VOCs on ground O3 in Xi’an during summer time
and (2) identify the potential sources of ambient VOCs during
summer time in Xi’an, China. This study would provide an
up-to-date ambient VOC data to relevant modeling researches
and facilitate the government in formulating efficient O3 con-
trol policies.

Methodology

Sample collection

Field VOC samples were collected from 16th July 2018 to
28th July 2018, when O3 episodes happened the most fre-
quently led by the specific weather conditions, on the roof of
a 15-m high building located in the southeastern part of down-
town Xi’an (Fig. S1 in Supplementary Material). The north
and east sides to the sampling site are residential areas and the
campus of Xi’an Jiaotong University, and the south is about
100 m away from the South Second Ring Road and west sides
are another main roads of Xi’an City. There are no factories
nor workshops near the sampling site; thus, it is suitable for
monitoring typical urban VOCs in ambient air (Shen et al.
2008; Shen et al. 2010; Shen et al. 2009; Zhang et al. 2015).

The ambient air samples were collected four times per day
during the sampling period, namely 8:00–9:00, 15:00–16:00,
19:00–20:00, and 23:00–24:00. Reasons for the timing of
sampling were illustrated in Section S1 (Supplementary
Material). Ambient air was compressed into clean evacuated
3 L silonite-treated stainless steel canisters (Entech
Instruments Inc., Simi Valley, California, USA) to approxi-
mately 100 KPa in 60 min controlled by a flow controller at
a constant flow rate of 50 mL/min. A total of 56 samples were
obtained during the 2-week strengthened study. Along with
the VOC sample collection, continuous measurement of gas-
eous pollutants (CO, O3, SO2, and NOx) was conducted as
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well. The instruments used for gaseous pollutant monitoring
are shown in Table S1 (Supplementary Material).

Laboratory analysis of VOCs

Analysis of the VOC samples was entrusted by Institute of
Geochemistry, Chinese Academy of Sciences. The air samples
were analyzed with a model 7200 preconcentrator (Entech
Instruments Inc., California, USA) coupled with an Agilent
5977 gas chromatography mass selective detector/flame ioni-
zation detector (GC-MSD/FID, Agilent Technologies, USA).
Detailed information about the analysis method was described
in Zhang et al. (2016). In summary, 500 mL air samples were
drawn from the canister through a liquid nitrogen-cooled cryo-
genic trap (0.32 cm × 20 cm) with glass beads (60/80 mesh) at
− 160 °C. After trapping, this primary trap was heated to
10 °C, and all target compounds were transferred using pure
helium as mobile phase to the secondary trap (0.32 cm ×
20 cm) at − 50 °C with Tenax-TA (60/80 mesh) as adsorbents.
This micropurge-and-trap step could remove mostly of the
redundant H2O and CO2 in air sample. The secondary trap
was then heated to get VOCs transferred by helium to a third
cryofocus trap (0.08 cm × 5 cm) at − 170 °C. After the focus-
ing step, the trap was rapidly heated and the VOCs were trans-
ferred to the GC-MSD/FID system. The mixture was first
separated by a DB-1 capillary column (60 m × 0.32 mm ×
1.0 μm, Agilent Technologies, USA), with helium as the car-
rier gas at a constant rate of 4.0 mL/min, and then split into
two ways controlled by a splitter to a 0.35 m × 0.10 mm I.D.
stainless steel line output to MSD detection, and to a HP
PLOT-Q column (30 m × 0.32 mm × 20.0 μm, Agilent
Technologies, USA) output to flame ionization detector
(FID) detection. The GC oven temperature was programmed
to be initially at 10 °C, held for 3 min; this then increased to
120 °C at 5 °C/min, and then to 250 °C at 10 °C/min with a
final hold time of 20 min. The MSD was operated in selected
ion monitoring mode and the ionization method was electron
impacting (EI, 70 eV). A total of 106 VOC species were
measured in this study and the minimum detection limits
(MDLs) are shown in Table S2. The MDLs for 106 VOC
species ranged from 4 to 181 pptv and 101 of themwere lower
than 100 pptv.

Ozone formation potential calculation

As many VOCs are well-known O3 precursors in the atmo-
sphere (Wang et al. 2017), ozone formation potential (OFP)
was calculated in this study to estimate the contribution from
photochemical reactions of VOCs. One method was maxi-
mum incremental reactivity (MIR) (Carter 2009), which was
shown in Eq. (1).

OFPi ¼ VOCi½ � �MIRi; ð1Þ

where OFPi, [VOCi], and MIRi are the ozone formation po-
tential and are the concentration and maximum incremental
reactivity of individual VOCi, respectively. In Carter’s study,
the MIR model required a VOC-limited and high NOx condi-
tion which applied to the Guanzhong area (Li et al. 2017; Xue
et al. 2017; Zhang et al. 2015).

Another method was propene-equivalent (Prop-Equiv)
concentration (Atkinson and Arey 2003), calculated as Eq. (2)

Prop−Equivi ¼ VOCi½ � � kOH;i=kOH;propene; ð2Þ

where KOH,i and KOH,propene are the rate constants of VOCi

and propene reacted with OH at 298 K, respectively. The
values of MIR and KOH are summarized in Table S3.

Source apportionment model

Positive matrix factorization (PMF) model was widely used in
VOC source apportionment studies (An et al. 2017; Duan
et al. 2008; Guo et al. 2011; Shao et al. 2016). US EPA
PMF 5.0 model was employed in the present study. The func-
tion of the PMF model is to identify the number of emission
sources and the species profile of each source, and to attribute
the amount of mass from each source to each species in each
individual sample by an analyst based on the measured data at
the receptor site (Guo et al. 2011). Based on the data matrix X
of i by j dimensions (i means number of samples and j means
VOC species measured), the calculation principle could be
presented by the equation as Eq. (3):

xij ¼ ∑
p

k¼1
gik f kj þ eij ð3Þ

where xij is the jth species concentration measured in the ith
sample, gik is the species contribution of the kth source to the
ith sample, fkj is the jth species fraction from the kth source, eij
is the residual for each sample/species, and p is the total num-
ber of independent sources (Shao et al. 2016). Uncertainty
level was necessary in PMF model and for species with con-
centration higher than MDL, the uncertainty levels could be
calculated by Eq. (4), otherwise by Eq. (5):

Uncertainty ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EF � Concentrationð Þ2 þMDL2
q

ð4Þ

Uncertainty ¼ 5

6
�MDL ð5Þ

where MDL represents the minimum detection limit (as an
absolute concentration value) and the EF for the relative mea-
surement error determined by calibration of the instruments
(as 15% in this study).

In this study, although 106 species were measured and 86
of themwere quantified, it was not necessary to use all of them
for the PMF model. Referring to principles from EPA PMF
Model 5.0 (http://www.epa.gov/heasd/research/pmf.html), the
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unique VOC species that are important tracers of sources,
such as isoprene, were selected in model calculation in this
study. Table S4 shows that the VOC species selected were
appropriate for source apportionment in this study.

Results and discussion

General description of VOC level over Xi’an

The statistical results of 106 measured VOCs during the sam-
pling period are shown in Table 1 (data of 22th July was
absent due to electricity problem). Overall, 86 out of the 106
species were measured with concentrations over detect limi-
tations. The daily concentrations of TVOC (86 species with
concentrations over MDL) were 42.6 ± 45.8 (24.3–61.4)
ppbv. The lowest TVOC concentrations were observed in
the night period (23:00–24:00, 28.4 ± 25.6 ppbv) which may
be due to the lowest anthropogenic activity level (Li et al.
2017). By contrast, the highest TVOC concentration was
shown in the morning (49.6 ± 40.1 ppbv). Compared with
TVOC concentrations in megacities with severe O3 popula-
tion in China, Xi’an has been faced the VOC-related air pol-
lution issue as severe as Beijing (48.9 ppbv), Shanghai
(37.5 ppbv), and Guangzhou (39.7 ppbv) (Han et al. 2017;
Zhang et al. 2018; Zou et al. 2015). While compared with
Tokyo (27.4 ppbv) and Seoul (35.6 ppbv) which have succes-
sively controlled O3 problem (Hoshi et al. 2008; Huang et al.
2015; Song et al. 2019), there should be a hard and long way
for Xi’an in VOCs and O3 control.

The 86 measured VOCs were classified into 7 categories
and the distributions are shown in Fig. S2. OVOCs were the
biggest contributor to TVOCs with daily average proportion
of 37%. As a crucial production of photochemical reactions in
atmosphere, the high compositions of OVOCs during summer
time in Xi’an were reasonable (Louie et al. 2013). Followed
by OVOCs, alkanes and halocarbons were another two crucial
compositions with occupation of 27% and 17%, respectively.
Aromatics and alkenes showed comparable contributions to
TVOCs (7%). Acetylene contributed as much as 4% to TVOC
alone; however, the occupation of carbon disulfide was neg-
ligible (< 1%).

The most abundant VOC in this study was acetone, follow-
ed by ethane and isopentane, with the daily average concen-
trations of 11.9 ± 8.44, 1.97 ± 1.17, and 1.87 ± 2.06 ppbv, re-
spectively. Generally, short-chain hydrocarbons (i.e., acety-
lene, ethylene, and ethane), halocarbons (i.e., chloromethane),
and OVOCs (i.e., acetone) were comparable abundant among
the VOC species. These short-chain VOCs were widely re-
ported to be derived from biomass and biofuel burning (An
et al. 2017; Guo et al. 2011). At the same time, benzene and
isopentane were also abundant which were highly correlated
with vehicular emissions (Hwa et al. 2002). The solvent-

originated compounds (i.e., toluene and m/p-xylene) also
showed relative high concentrations (Kumar et al. 2018;
Yurdakul et al. 2018). This characteristic in VOC composi-
tions indicated that the atmospheric VOCs in urban Xi’an
were determined by a combined influence from complex
sources.

Diurnal variation of VOCs and trace gas

Diurnal and daily average concentrations and standard
deviations are given in Fig. 1a. As numerous factors such
as traffic density, meteorological, and human activities
could affect the diurnal cycle of VOC pollutants, the char-
acteristics of diurnal variations could also reflect the
sources, transportation, and chemical reaction of ambient
VOCs (Lyu et al. 2016). Overall diurnal trend was similar
during the sampling period and was consistent with pat-
terns reported in literature (Kumar et al. 2018; Menchaca-
Torre et al. 2015). In detail, ambient VOCs showed the
highest concentrations in morning peak (8:00–9:00) and
gradually decline to the lowest in midnight (23:00–24:00)
with an obvious rebound in the afternoon (15:00–16:00).
Generally, a combination of lower boundary layer height
and release of VOCs from heavy traffic were the major
reasons for the higher levels of VOCs in the morning peak
hours (Garzón et al. 2015). In contrast, increased disper-
sion and dilution of the pollutants due to elevation of
planetary boundary layer and the natural degradation of
VOCs during nighttime jointly lead to the lowering of
VOC levels in midnight (Menchaca-Torre et al. 2015).

Alkanes and aromatics followed the diurnal cycles which
also showed good correlations with vehicle density reported in
Li et al. (2017) in Xi’an. OVOCs did not show peaks in the
morning but had dramatically high concentrations in after-
noon and evening peak (19:00–20:00). This is because
OVOCs could be formed by the high photochemical reactions
of hydrocarbons with OH and NO3 radicals during afternoon
which could cumulate to evening (Sadanaga et al. 2019).
While as the short life of OVOCs, the concentrations of
OVOCs decreased significantly in midnight (Louie et al.
2013). Halocarbon did not follow the diurnal trends either
but showed consistent concentrations during 1 day, which
was probable because of the low reactivity in photochemical
reactions and the less variable emission sources (Kumar et al.
2018).

As shown in Fig. 1, the daily average VOC concentra-
tions both showed relative high levels in Saturday and
Monday. A previous study indicated that the vehicle count
at South 2nd Ring Road (close to the sampling site) was
extremely high on weekend and Monday, which would
dominate the daily variation during the campaign (Li
et al. 2017). During weekend, citizens usually would like
more activities (i.e., shopping and gathering) which will
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Table 1 Composition of VOCs in different sampling time periods

8:00–9:00 15:00–16:00 19:00–20:00 23:00–24:00

VOC species AVG SD AVG SD AVG SD AVG SD TAVG TSD

Alkyne 3.79 3.72 0.99 0.50 1.67 2.10 0.76 0.30 1.80 2.41
Acetylene 3.79 3.72 0.99 0.50 1.67 2.10 0.76 0.30 1.80 2.41
Alkene 3.82 2.43 2.90 1.63 3.02 1.91 1.82 1.68 2.89 2.58
Ethylene 2.18 1.38 0.66 0.24 0.92 0.54 0.81 0.33 1.14 0.97
Propylene 0.34 0.14 0.24 0.11 0.24 0.10 0.24 0.13 0.27 0.13
1-Butene 0.35 0.38 0.35 0.21 0.35 0.20 0.44 0.77 0.37 0.44
Trans-2-butene 0.03 0.04 0.08 0.05 0.07 0.09 0.05 0.12 0.06 0.08
Cis-2-butene 0.02 0.03 0.05 0.06 0.06 0.07 0.02 0.04 0.04 0.05
1-Pentene 0.03 0.03 0.02 0.03 0.03 0.05 0.01 0.02 0.02 0.03
Isoprene 0.84 0.40 1.48 0.88 1.24 0.69 0.20 0.13 0.94 0.76
Trans-2-pentene 0.02 0.02 0.02 0.03 0.04 0.03 0.01 0.02 0.03 0.03
Cis-2-pentene 0.01 0.01 <DL 0.01 0.01 0.02 <DL <DL 0.01 0.01
1-Hexene <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
1,3-Butadiene <DL <DL <DL <DL 0.04 0.12 0.03 0.10 0.02 0.08
Alkane 13.87 9.89 12.88 15.31 10.74 9.48 8.01 6.61 11.38 12.35
Ethane 3.09 1.16 1.83 1.16 1.36 0.78 1.62 0.79 1.97 1.17
Propane 1.50 0.48 1.31 0.95 0.97 0.56 1.02 0.51 1.20 0.67
Isobutane 1.14 0.93 1.66 2.17 3.02 3.49 1.07 1.55 1.72 2.31
n-Butane 1.71 1.34 1.64 2.02 1.98 2.68 1.25 1.10 1.65 1.85
Isopentane 3.00 3.08 2.18 2.21 1.14 0.29 1.17 1.04 1.87 2.06
n-Pentane 0.60 0.33 1.63 3.57 0.41 0.14 0.53 0.60 0.79 1.83
2,2-Dimethylbutane 0.02 0.02 0.01 0.02 0.01 0.02 <DL 0.01 0.01 0.02
Cyclopentane 0.06 0.04 0.08 0.11 0.05 0.07 0.02 0.02 0.05 0.07
2,3-Dimethylbutane 0.05 0.04 0.04 0.05 0.01 0.02 0.01 0.01 0.03 0.04
2-Methylpentane 0.23 0.12 0.20 0.26 0.17 0.11 0.10 0.06 0.18 0.16
3-Methylpentane 0.18 0.09 0.20 0.27 0.17 0.13 0.10 0.08 0.17 0.16
n-Hexane 0.97 1.53 0.78 1.21 0.33 0.31 0.28 0.33 0.59 1.01
Methylcyclopentane 0.06 0.03 0.06 0.07 0.05 0.04 0.02 0.02 0.05 0.05
2,4-Dimethylpentane <DL 0.01 0.01 0.02 0.01 0.02 <DL <DL 0.01 0.01
Cyclohexane 0.59 0.18 0.77 0.58 0.51 0.14 0.53 0.16 0.60 0.33
2-Methylhexane 0.04 0.03 0.03 0.05 0.04 0.04 <DL <DL 0.02 0.04
2,3-Dimethylpentane <DL 0.01 0.01 0.02 0.02 0.03 <DL <DL 0.01 0.02
3-Methylhexane 0.05 0.03 0.04 0.06 0.04 0.04 0.02 0.02 0.04 0.04
2,2,4-Trimethylpentane 0.06 0.05 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.04
n-Heptane 0.19 0.19 0.09 0.08 0.11 0.11 0.09 0.09 0.12 0.13
Methylcyclohexane 0.06 0.03 0.07 0.10 0.09 0.14 0.03 0.03 0.06 0.09
2,3,4-Trimethylpentane <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
2-Methylheptane 0.01 0.01 <DL 0.01 0.01 0.02 <DL 0.01 0.01 0.01
3-Methylheptane 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01
n-Octane 0.06 0.04 0.04 0.04 0.05 0.04 0.02 0.03 0.04 0.04
n-Nonane 0.05 0.03 0.02 0.02 0.04 0.03 0.02 0.02 0.03 0.03
n-Decane 0.04 0.02 0.05 0.09 0.04 0.02 0.03 0.02 0.04 0.05
n-Undecane 0.04 0.04 0.03 0.05 0.05 0.13 0.02 0.03 0.04 0.07
n-Dodecane 0.05 0.05 0.03 0.06 0.02 0.03 0.02 0.04 0.03 0.04
Benzene series 3.65 2.98 3.27 5.14 2.58 1.42 2.07 1.87 2.89 3.50
Benzene 1.07 1.50 0.46 0.50 0.37 0.28 0.58 0.95 0.62 0.94
Toluene 0.98 0.42 1.13 1.66 0.76 0.29 0.56 0.30 0.86 0.88
Ethylbenzene 0.29 0.17 0.31 0.57 0.30 0.17 0.17 0.10 0.27 0.31
m/p-Xylene 0.66 0.43 0.72 1.29 0.64 0.35 0.41 0.27 0.61 0.70
Styrene 0.15 0.16 0.20 0.42 0.07 0.05 0.06 0.04 0.12 0.23
o-Xylene 0.29 0.19 0.31 0.56 0.27 0.14 0.17 0.09 0.26 0.30
Isopropylbenzene 0.01 0.01 0.01 0.01 0.01 0.01 <DL <DL 0.01 0.01
n-Propylbenzene 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
m-Ethyltoluene 0.04 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02
p-Ethyltoluene 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
1,3,5-Trimethylbenzene 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01
o-Ethyltoluene 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
1,2,4-Trimethylbenzene 0.06 0.03 0.04 0.03 0.05 0.04 0.04 0.03 0.05 0.03
1,2,3-Trimethylbenzene 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
m-Diethylbenzene <DL <DL <DL 0.01 <DL 0.01 <DL 0.01 <DL 0.01
p-Diethylbenzene <DL 0.01 <DL 0.01 <DL 0.01 <DL 0.01 <DL 0.01
Halohydrocarbon 8.79 7.65 8.58 6.66 7.19 5.03 4.92 2.33 7.37 7.27
Freon-12 0.63 0.06 0.62 0.05 0.67 0.10 0.61 0.07 0.63 0.07
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increase the burden of road traffic (Xu et al. 2018; Zou
et al. 2019), while for Monday, there will be generally
traffic jams at this road due to many local reasons. In

addition, this could also explain the extremely high con-
centrations in two Monday (17th and 24th July, 2018)
among the 10 weekdays in the campaign.

Table 1 (continued)

8:00–9:00 15:00–16:00 19:00–20:00 23:00–24:00

VOC species AVG SD AVG SD AVG SD AVG SD TAVG TSD

Chloromethane 1.16 0.47 1.00 0.25 1.03 0.19 1.01 0.17 1.05 0.29
Freon-114 0.02 <DL 0.02 0.01 0.03 0.01 0.03 0.01 0.03 0.01
Vinyl chloride 0.04 0.04 0.03 0.05 0.02 0.04 0.02 0.02 0.03 0.04
Bromomethane 0.01 0.01 0.01 0.01 0.01 0.01 <DL 0.01 0.01 0.01
Chloroethane 0.05 0.04 0.04 0.04 0.04 0.05 0.02 0.03 0.04 0.04
Vinyl bromide <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Freon-11 1.81 2.09 1.82 2.06 0.69 0.52 0.99 0.80 1.33 1.57
1,1-Dichloroethene <DL <DL <DL <DL <DL 0.01 <DL <DL <DL 0.01
Methylene chloride 1.70 0.70 3.02 3.01 1.49 1.01 0.81 0.46 1.75 1.78
Allyl chloride <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Freon-113 0.10 0.02 0.10 0.02 0.13 0.11 0.09 0.01 0.10 0.06
Trans-1,2-dichloroethene 0.01 0.02 <DL 0.01 <DL 0.01 <DL <DL <DL 0.01
1,1-Dichloroethane 0.19 0.27 0.14 0.15 0.11 0.09 0.04 0.05 0.12 0.17
Cis-1,2-dichloroethylene <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Chloroform 1.42 2.99 0.41 0.23 0.33 0.18 0.27 0.21 0.61 1.53
1,2-Dichloroethane 0.87 0.40 0.76 0.39 1.47 1.43 0.60 0.28 0.93 0.83
1,1,1-Trichloroethane <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Carbon tetrachloride 0.18 0.04 0.16 0.04 0.28 0.46 0.13 0.06 0.19 0.23
1,2-Dichloropropane 0.28 0.17 0.20 0.14 0.59 0.50 0.16 0.06 0.31 0.32
Bromodichloromethane <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Trichloroethylene 0.05 0.12 0.01 0.02 0.01 0.04 <DL 0.02 0.02 0.07
Cis-1,3-dichloropropene 0.01 0.03 0.01 0.02 0.06 0.07 <DL <DL 0.02 0.04
Trans-1,3-dichloropropene <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
1,1,2-Trichloroethane 0.02 0.02 0.02 0.03 0.05 0.09 <DL 0.01 0.02 0.05
Dibromochloromethane <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
1,2-Dibromoethane <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Tetrachloroethylene 0.04 0.03 0.04 0.04 0.02 0.02 0.01 0.01 0.03 0.03
Chlorobenzene 0.11 0.04 0.14 0.05 0.09 0.02 0.08 0.02 0.11 0.04
Bromoform <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
1,1,2,2-Tetrachloroethane <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
1,3-Dichlorobenzene <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Benzyl chloride <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
1,4-Dichlorobenzene 0.03 0.04 0.01 0.02 0.01 0.02 <DL 0.01 0.01 0.03
1,2-Dichlorobenzene <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
1,2,4-Trichlorobenzene <DL 0.01 <DL <DL 0.01 0.02 <DL <DL <DL 0.01
Hexachloro-1,3-butadiene 0.04 0.03 0.02 0.02 0.04 0.02 0.03 0.02 0.03 0.02
Oxygenated VOCs 15.4 13.2 17.3 14.0 20.5 23.6 10.5 12.3 15.9 17.3
Acetone 11.9 8.67 14.0 8.50 14.0 9.53 7.81 6.19 11.9 8.44
Isopropyl alcohol 1.62 1.35 1.57 1.85 1.92 1.99 1.27 1.54 1.60 1.66
Methyl tert-butyl ether 0.25 0.17 0.18 0.11 0.24 0.13 0.14 0.09 0.20 0.13
Vinyl acetate 0.53 1.12 0.39 1.02 2.02 4.89 0.81 2.80 0.94 2.90
Methyl ethyl ketone 1.04 1.88 0.57 1.12 2.01 6.31 0.50 1.74 1.03 3.39
Ethyl acetate <DL <DL 0.55 1.46 0.22 0.76 <DL <DL 0.19 0.83
Tetrahydrofuran <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
1,4-Dioxane <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Methyl isobutyl ketone <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Methyl butyl ketone <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
Others 0.33 0.23 0.29 0.14 0.40 0.55 0.34 0.45 0.34 0.37
Carbon disulfide 0.33 0.23 0.29 0.14 0.40 0.55 0.34 0.45 0.34 0.37
∑VOCs 49.6 40.1 46.2 43.4 46.0 44.1 28.4 25.6 42.6 45.8

AVG denotes average value

SD denotes standard deviation

TAVG denotes total average VOCs per day

TSD denotes total standard deviation for daily average VOCs
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Concentrations of trace gaseous pollutants during the sam-
pling period are listed in Fig. 1b. The data showed that PM2.5

ranged from 5 to 89 μg m−3 (averagely 28.8 μg m−3) which

led a favorable weather condition for ozone generation. SO2

concentrations were quite stable that very small diurnal vari-
ation was observed. The relatively low concentrations of SO2

Table 2 Correlations between selected VOC individuals

Isopentane Benzene Toluene Ethylbenzene m/p-Xylene Isoprene Chloromethane

Isopentane 1

Benzene 0.30 1

Toluene 0.66 0.61 1

Ethylbenzene 0.22 0.39 0.73 1

m/p-Xylene 0.25 0.39 0.70 0.99 1

Isoprene 0.17 − 0.01 0.02 0.12 0.15 1

Chloromethane − 0.09 0.52 0.10 0.03 0.02 − 0.16 1

Fig. 3 Characters of 5 factors analyzed by PMF
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(9.2 ± 2.9 μg m−3) indicated that coal combustion source was
weak for this sampling site during the study. Comparably,
NO2 showed much high concentrations (25.3 ± 13.2 μg m−3)
than SO2, referring that vehicular emissions showed stronger
impacts to this sampling site. CO, generally derived from local
sources, showed a descending order from morning to mid-
night, was inferred to be mainly affected by traffic emissions
as well. NO2 concentration showed obvious diurnal variations
that a significant low peak was observed during the afternoon
period. O3 was the major pollutant during the sampling period
with average concentration of 95.3 ± 55.4 μg m−3, and even
exceeded the national standard (160 μg m−3, GB3095-2012)
in afternoon period. The diurnal variation pattern of O3 was
contrary to NO2 that the peak concentration happened in af-
ternoon. Similar patterns were also observed in previous stud-
ies and a probable explanation was that the generation of O3

from photochemical reactions would consume NO2 (Feng
et al. 2016; Tan et al. 2018).

To further detect the difference of VOCs between weekday
and weekend, the comparison of concentration of VOCs and
gaseous pollutants between weekday and weekend is done
and shown in Fig. 2. The average VOC concentrations on
weekend were statistically significantly higher than those over
weekdays (p < 0.05). For the diurnal patterns, weekend
showed much higher in the afternoon, night, and midnight
periods but slightly lower VOC level in the morning. It is
because most citizens were out of duty thus morning peak
was weaker than weekdays. It has been reported that road
traffic in weekend was much busier than weekdays especially
in midnight which were even twice of weekdays (Li et al.
2017). This phenomenon was also observed in many litera-
tures and commonly attributed the high VOC level on week-
end to vehicle exhaust (Liu et al. 2016; Song et al. 2007;
Warneke et al. 2013; Zhang et al. 2012). A further insight of
VOC profiles on weekdays and weekend, higher alkanes (i.e.,
isopentane) on weekend also proved that traffic dominated the

Factor 1 
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exhaust
64.4%

Factor 2 
Vegetation 

emission
5.5%

Factor 3 
Solvant usage

5.5%

Factor 4 
Secondary 
formation

20.3%

Factor 5 Biomass burning
4.3%

Fig. 4 Source apportionment
results from PMF
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high VOCs on weekend. Another interesting finding was that
the OVOC concentrations on weekend were much higher than
those on weekdays (p < 0.05); however, it does not lead to
significant higher O3 concentrations on weekend than week-
days (p > 0.05).

VOC source apportionment

Source identification could be realized by many methods (i.e.,
species abundance, diagnostic ratios, and correlations) which
could facilitate the further source apportionment (Liu et al.
2008; Parra et al. 2009; Kumar et al. 2018; Singh et al.
2016). As shown in Table S5, isopentane and acetone were
abundant in morning and afternoon period, respectively, indi-
cating vehicle emission and secondary formation were two
main potential sources. Good correlations between
isopentane/toluene (0.66) and toluene/benzene (0.61)
(Table 2) supported the conclusion above, indicating a certain
contribution from vehicle emissions (Li et al. 2017). To further

examine the importance of vehicle emission and other
sources, the ratios of i-pentane to n-pentane and toluene to
benzene were calculated using the linear regression method
and compared with the two VOC sources (Wang et al. 2013)
(Fig. S3). The calculated ratios for i-pentane/n-pentane and
toluene/benzene both fell between the lines for vehicular
emission obtained in tunnel study (Cui et al. 2018; Hwa
et al. 2002) and household coal combustion (Liu et al.
2008), but were much close to coal combustion zone, indicat-
ing that the ambient VOCs in this study were majority affected
by vehicular exhaust.

To further detect the contribution from different VOC
sources, source apportionment was conducted by PMF which
was described in the “Source apportionment model” section
and Section S2. After running the PMF model, five factors
were selected according to the resulted stableQ values and the
characters are shown in Fig. 3. Factor 1 was distinguished by
high percentages of C3–C6 alkane (especially isopentane)
which are associated with unburned vehicular emissions

Table 3 Top ten contributors to OFP in different time periods during sampling time (ppbv)

8:00–9:00 15:00–16:00 19:00–20:00 23:00–24:00

Ethylene 16.2 Isopentane 24.6 Isoprene 11.3 Ethylene 5.99

Isopropyl alcohol 7.65 Isoprene 13.4 Acetone 7.86 Acetone 4.37

1-Hexene 6.67 Acetone 7.84 Ethylene 6.82 m/p-Xylene 3.03

Methylcyclohexane 4.92 m/p-Xylene 5.33 m/p-Xylene 4.76 1-Butene 2.32

n-Butane 4.14 Ethylene 4.88 Isobutane 3.65 Propylene 2.28

m/p-Xylene 3.23 Isobutane 4.46 Propylene 2.28 Isoprene 1.85

p-Ethyltoluene 2.66 Toluene 3.06 Toluene 2.06 Isopentane 1.61

2,2,4-Trimethylpentane 1.90 Propylene 2.21 n-Butane 2.02 Toluene 1.51

Isoprene 1.89 o-Xylene 2.00 1-Butene 1.86 Isobutane 1.29

Toluene 1.86 1-Butene 1.87 o-Xylene 1.75 n-Butane 1.27

Subtotal of 10 OFP species 51.1 69.7 44.3 25.5

Total OFP 64.3 82.7 56.0 33.7

Ratio of subtotal OFP to total OFP 79% 84% 79% 76%
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(Guo et al. 2004); additionally, toluene is usually related to
vehicular emissions (Ho et al. 2009). Therefore, factor 1 could
be considered as vehicular emission. The dramatically high
peak of isoprene in source 2 indicated that the isoprene
was mostly emitted by vegetation (Shao et al. 2016).
Source 3 is associated with high percentages of toluene,
ethylbenzene, and xylenes, with a certain amount of high-
C-number alkanes. It is well known that these above men-
tioned aromatics can be emitted from solvent use (Borbon
et al. 2002) Monod et al., 2001. Source 4 showed very low
percentages of hydrocarbons but significantly high per-
centages of oxygenated VOCs (acetone, isopropyl, and
alcohol), indicating that this source could be secondary
formation in the atmosphere (Singh et al. 1994). Since
chloromethane is normally considered as a typical tracer
of biomass/biofuel burning (Liu et al. 2008), the high per-
centage of chloromethane and acetone, as well as certain
percentages of short-chain alkenes and aromatics, indicat-
ing source 5 should be biomass burning (Wang et al.
2014).

Figure 4 presents the individual contribution of each
source to the VOCs measured at the sampling site in sum-
mer Xi’an. Vehicular emission was the major source with
contribution of 64.4% to ambient VOCs at this site, which
was consistent with the discussion above. However, this
proportion from vehicle-related emission was markedly
higher when compared with source apportionment results
in other megacities, such as Shanghai (25%) and Beijing
(33%) (Li et al. 2018) Sheng et al., 2018. The high con-
tribution from vehicle emission could be attributed to the
heavy traffic near the sampling site. Secondary formation
from photochemical reactions was the second largest
source to the VOCs (20.3%) because of the favorable
weather conditions (i.e., high temperature and strong sun-
light). Vegetation emissions, solvent usage, and biomass
burning all showed ~ 5% contributions to the ambient
VOCs which were much weaker than the two main
sources. In summary, located in the commercial and edu-
cational zone and far away from industries and suburb,
the sampling site in this study was mainly influenced by
vehicular emissions and secondary formation while con-
tributions from solvent usage, biomass burning, and veg-
etation emissions were limited.

Ozone formation potential

Figure 5 shows the time series variations of OFP during sam-
pling period by MIR method. Generally, the results showed
that average OFP followed the sequence of alkenes > aro-
matics ≈ alkanes > OVOCs > alkyne. Alkenes were the largest
contributor in OFP during the campaign which averagely ac-
counts for 44.5% of total OFP. As the occupation of alkenes in
TVOCwas not great, the high OFP of alkenes was mainly due

to their high reactivity in photochemical reactions (Hui et al.
2018). Aromatics and alkanes showed comparable contribu-
tions to OFP (both ~ 19%), although the concentrations of
alkanes were much higher than aromatics in the sampling site,
the lower photochemical reaction activity limited their contri-
butions to ozone formation (Carter 2009). OVOCs also
showed fair contribution (15.1%) to total OFP of which ace-
tone was the greatest individual contributor. The time series
variations showed that the total OFP ranged from 18.5 to
195 ppbv in which a factor over 10 was observed. An unusual
peak in 15:00–16:00 22nd July 2018 was observed; however,
the OFP compositions were different. The dramatically high
contribution from aromatics and alkanes deduced that this
episode should be derived from heavy traffic emissions in-
stead of photochemical reactions as the other compositions
during afternoon periods.

OFP of individual VOC species also varied significantly.
Table 3 lists the top ten VOC species from the OFP by MIR
method. The top ten species contributed majority of the total
OFPs with contributions from 76 to 84%. This indicated that
the target VOC individuals would be very important in O3

pollutant control. In detail, ethylene, isopentane, isoprene, ac-
etone, m/p-xylene, and toluene showed higher photochemical
reaction reactivity and contributed most of OFPs, which was
similar with Hui et al. (2018). Of the top ten OFP contributors,
ethylene was the largest composition in the morning and mid-
night periods while isopentane contributed over 30% the total
OFP in afternoon. Ethylene and isopentane could both be
emitted from combustion-related sources (i.e., coal combus-
tion, biomass burning, and vehicle emission) (Shao et al.
2016; Song et al. 2019), but considering the source apportion-
ment results in former section, vehicular emission is probably
the largest contributor to these two species and consequently
should be prior controlled in Xi’an. Isoprene, as a marker for
biogenic VOCs, showed certain high OFPs in all periods
(from 1.85 to 13.4 ppbv), indicating that biogenic VOCs could
not be ignored in urban Xi’an city when controlling O3

pollutants.
Comparison of measured O3 concentrations with OFP

calculated by MIR and Prop-Equiv methods is drawn in
Fig. 6. Marked overestimation was observed for Prop-
Equiv method compared with the measured ambient O3

concentrations. As reported in literature, the ground-level
O3 could not be derived from both local photochemical
reactions and regional transportation (Feng et al. 2016).
The overestimation of OFP by Prop-Equiv method could
be explained by the extremely high kOHs in the calcula-
tion which were too ideal to happen in realistic atmo-
sphere, while MIR method has considered multiple atmo-
spheric conditions including temperature, NOx concentra-
tions, etc. (Carter 2009). Thus, it could be concluded that
MIR method was more reasonable in evaluation of the
OFPs in summer Xi’an.
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Conclusion

Urban VOC profiles were measured using SUMMA canister
method during 16th to 28th July 2018 with time resolution of
4 times per day and 1 h per time (8:00–9:00, 15:00–16:00,
19:00–20:00, and 23:00–24:00) in Xi’an, China. Eighty-six
out of 106 species were detected with concentrations higher
than MDLs and the TVOC levels ranged from 24.3 to
61.4 ppbv. Temporal variations showed decline concentra-
tions from morning to midnight with an obvious rebound in
afternoon. The vehicle density could explain the extremely
high VOC concentrations during morning periods and also
strong weekend effects on VOC concentrations (p < 0.05).
However, the O3 concentrations in weekend were not signif-
icantly higher than those over weekdays (p > 0.05).
Isopentane variations indicated that vehicle emissions were
dominant in the morning while acetone which was formed
by photochemical reactions increased and cumulated in the
afternoon and evening periods. The diagnostic ratios of i-pen-
tane/n-pentane and toluene/benzene in this study were highly
close to those reported in tunnel study which indicated that
vehicular emissions were the largest source to the VOCs in
this sampling site. PMF results confirmed that vehicular emis-
sion was the most important source to ambient VOCs (64.4%)
followed by secondary formation (20.3%), while vegetation
emission, solvent usage, and biomass burning showed com-
parable contributions (~ 5%). OFP results from MIR and
Prop-Equiv showed that alkenes had the highest OFP follow-
ed by aromatics, alkanes, and OVOCs. A marked overestima-
tion was observed in Prop-Equiv-based OFP calculation,
resulting that MIR method was more reasonable and suitable
for OFP evaluation in summer Xi’an. The results in this study
indicated that vehicular emission has taken the place of indus-
trial emission to be the major VOC source in summer Xi’an
led by the deindustrialization policy. Vehicular emission and
biogenic source should be priority controlled when making
regional ozone control policies.
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