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Abstract

This study investigated the effects of pollutionigsions on the bioreactivity of PMduring Asian dust
periods. PMsduring the sampling period were 104.2 and 85.7 [fganXi’an and Beijing, respectively,
whereas PMs which originated from the Tengger Desert was ctdlé (dust background). Pollution
conditions were classified as non-dust days, poluepisode (PE), dust storm (DS)-1, and DS-2
periods. We observed a significant decrease inwialiility and an increase in LDH that occurred in
A549 cells after exposure to BMduring a PE and DS-1 in Xi'an and Beijing compatedlengger
Desert PMs. Positive matrix factorization was used to idgnpbllution emission sources. BNMfrom
biomass and industrial sources contributed to atitars in cell viability and LDH in Xi'an, whereas
vehicle emissions contributed to LDH in Beijing. OEC, CI, K*, Mg**, Ca, Ti, Mn, Fe, Zn, and Pb
were correlated with cell viability and LDH for instrial emissions in Xi'an during DS. OC, EC, 80

S, Ti, Mn, and Fe were correlated with LDH for v&@&iemissions in Beijing during DS. In conclusion,
the dust may carry pollutants on its surface to reind areas, leading to increased risks of particle
toxicity.

Keywords: air pollution, dust storm, metal, physicochemisigurce apportionment.
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Capsule of main finding
The significance and novelty of this study was tetd dust may provide a platform to intermix with
chemicals on its surfaces, thereby increasing itve#ctivity of PM s during dust storm episodes.
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1. Introduction

Asian dust storms, that originate from deserts ofthern/northwestern China, often move to
surrounding areas during late winter and springe(eé al., 2003). Dust storm events often occur in
upwind regions in spring, such as from the Tendgesert. Even after being transported thousands of
miles, dust is able to decrease visibility and, enlonportantly, deteriorate the air quality of downav
areas (Chan et al., 2008; Chan and Ng, 2011; Le&,&£006). Epidemiological evidence reported that
pulmonary exposure to particulate matter of g2rbin aerodynamic diameter (BN increased the risk

of hospital admissions, cardiovascular disease pairdonary disease during dust storm episodes (Chan
et al.,, 2008; Chan and Ng, 2011; Ma et al., 201&pngret al., 2016). Although numerous reports
indicated associations between adverse human haalplacts and dust storm exposure, causal
relationships are still not very clear. In contrdakere are still many studies that observed inSoggmt
effects of dust storms on human health outcomesn ¢lough the particulate matter of <t in
aerodynamic diameter (PRl mass concentrations were significantly higherdoist storm days than
non-dust storm days (Chen et al., 2004; Lee eR807). This may have been due to the complexity of
the physicochemical characteristics of RMuring dust storm events.

Environmental impacts and health risks associatétd Wsian dust storms are of great concern to
downwind regions. For example, the long-range prartsof bacteria and viruses by dust storm was
previously reported (Chen et al., 2010; Garrisoalget2003). Cardiopulmonary effects caused by-ong
range transport of dust storm have also been fthin numerous down-wind regions, where the risk
of stroke (Kang et al., 2013), ischemic heart diesa cerebrovascular diseases, chronic obstructive
pulmonary diseases (Chan et al., 2008; Crooks.,e2@l6; Tam et al., 2012), asthma (Watanabe et al.
2011) were increased during the dust storm episddeserally, dust sand has relative lower particle
toxicity than urban dust based on the same masesentmation. However, dust sand could act as a
“carrier” to interact with pollutants during trarepation in the atmosphere. The dust sand coulgthia
role of “Trojan horse” that provides a platformitderact with chemicals on its surface. Therefoe,
particles toxicity or health outcomes on the dowrdvieceptor regions may be distinct difference tdue
its final physicochemical characteristics.

The Tengger Desert is the fourth largest dese€hima, and is an important source of dust storms
(Wang et al., 2005; Zhang et al., 2008). Desert suspended in the atmosphere and carried to morthe
and eastern regions is one of the important patewéygust storm transport (Sun et al., 2001). Ngtab
the rapid industrialization of China has producadyé amounts of pollutants that can interact wathtd
storm particles, thereby adding to concerns reggrthiealth impacts of pulmonary exposure to dust
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storms which require human health protection. Haweeontributions of local pollutions to BM
bioreactivity during dust storm events remain uacl&he objective of this study was to investighie
effects of local pollution emissions on PMbioreactivity during dust periods. Emission sosroé
PM,s in two downwind cities (Xi'an and Beijing) were tdemined during dust periods, and we
examined contributions of the BM emission sources and chemical constituents ofPtigs to its
bioreactivityin vitro.

2. Materials and Methods

2.1. Particle collection

PM, s samples were collected in Xi'an and Beijing durthgst periods weather from 9 March to 7 April
2015. Xi'an, located in Northwest China, is the itapcity of Shaanxi Province with industries in or
around the city. Beijing, located in the North odrith China Plain, is the economy and politics cantr
of China, while industries were all moved away frdhe city. Xi'an and Beijing both show the
continental monsoon climate, and spring is always dindy and changeable. The sampling site in
Xi'an has been reported previously (Shen et alL020Briefly, PM s was collected from the campus of
Xi'an Jiaotong University, where was between magads with heavy traffic and residential areas. The
sampling site in Beijing was carried out at the Bowivision of the Institute of Atmospheric Physics
Chinese Academy of Sciences, where was surrounglesshilential areas located near a busy highway.
PM., s samples were collected every day from 10:00 t®AQ24 hrs) during the sampling period.
Parallel sampling of Pk was collected on quartz filters (Whatman, UK) &remical analyses and
collected on Teflon filters (Whatman) for the biacévity by mini-volume air samplers (Airmetrics,
Eugene, OR, USA) with a flow rate of 5 L-iinQuartz filters were pre-heated before sampling to
600 °C for 3 h, and all filters were conditioned2@t-23°C and 35%~45% relative humidity (RH) for
equilibration. Mass of the filters were obtainedngsan electronic microbalance (MC5, Sartorius,
Gottingen, Germany). More details on the 2\vnhass analysis and quality control were described b
Caoet al.(2012).

Dust of the Tengger Desert was analyzed for astustce profile, and was collected from represergati
portions of the desert surface 99 km away fromomati highway S218 (40°0'56"N; 104°55’35"E). The
collected dust samples were stored in labeled gofene bags followed by air-dried at about 25 6€ f

1 week to remove moisture. Samples were sievedighrdyler sieves of 30, 50, 100, 200, and 400
mesh to obtain ~5 g of particles (with diameters @& um). The sieved samlpe was then re-suspended
in a chamber and sampled throughBMelective inlets onto 47-mm quartz filters for cheal analyses,
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whereas samples were collected onto Teflon filfersbioreactivity (Chow et al., 1994; Wu et al.,
2011b).

2.2. Chemical characterization

Anions (CI, NOs~, and SG) and cations (N&f, K*, Mg**, and C&") were determined in aqueous
extracts of sample filters as reported previousbhen et al., 2009). Briefly, a Dionex-600 Ion
Chromatograph (Dionex, Sunnyvale, CA, USA) was uledthe cation and anion analyses, with an
lonPacCS12A column and lonPac AS14A column, respdygt(Zhang et al., 2011). A DRI model 2001
carbon analyzer (Atmoslytic, Calabasas, CA, USA% wsed to determine the levels of organic carbon
(OC) and elemental carbon (EC) according to theR@WE thermal/optical reflectance (TOR) protocol
(Cao et al., 2007). OC fractions (OC1, OC2, OC38l @t4), OP (a pyrolyzed carbon fraction), and EC
fractions (EC1, EC2, and EC3) were determined altegrto our previous report (Cao et al., 2012). OC
was defined as OC1 + OC2 + OC3 + OC4 + OP. EC whsatl as EC1 + EC2 + EC3 — OP.

S, Ca, Ti, V, Mn, Fe, Zn, and Pb in PMwere determined using an Energy-dispersive Xx-ray
fluorescence (ED-XRF) spectrometry (PANalytical i&ps 5, Almelo, Netherlands). The ED-XRF
spectrometer was calibrated with thin-film standaotitained from MicroMatter (Arlington, WA, USA)
(Xu et al., 2012). Data were corrected for fieldrids, and duplicated samples were analyzed for erro
assurance.

2.3. Sour ce apportionment

Positive matrix factorization (PMF) was appliedidentify presumptive sources of the PMollected

in Xi'an and Beijing. PMF developed by Paatero ammlleagues has been widely used for source-
apportionment receptor modeling (Paatero, 1997telP@and Tapper, 1994), which has no limitations
on source numbers and does not require sourcéepifidormation (Wang et al., 2015). In this stuthe
mass concentration, two carbons, five ions, andléthents were included in the model EPA PMF 5.0:
OC, EC, CI, SQ*, NOs,, NH,, K, Ca, Mg, Ti, Mn, Cr, Co, Fe, Ni, Cu, Zn, Pb, an@.B
Concentrations and equation-based uncertaintieshemical species were input into the model, of
which uncertainty included detection limits andoerfractions (10%). The PMF model was run multiple
times, each run was initialized with random startpoints. The most physically interpretable prafile
were found with a six-factor solution.

2.4. Particle preparation

PM, s was removed from the filters using two-stage saioa in methanol according to our previous
report (Chuang et al., 2013). Samples were thesddrith a nitrogen stream. A RN stock solution (1
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mg/mL) was prepared in < 0.01% vol dimethyl sulttxiDMSO) in phosphate-buffered saline (PBS).
Fresh samples were kept &t@ and used within 1 week of preparation.

2.5. Cell culture and treatment

Human A549 alveolar epithelial cells (American Typelture Collection; Manassas, VA, USA) were
cultured in RPMI medium (10% fetal bovine serumnipiin, and streptomycin) at 37C with 95%
humidity and 5% C@ Cells (18 cells/mL). Cells were exposed to 0 and®@mL of PM s in serum-
free RPMI medium for 16 hrs. After exposure, cellsre analyzed for cell viability, whereas the
supernatants were analyzed for lactate dehydrogdh&sH).

2.6. Cdll viability

A sulforhodamine B (SRB) colorimetric assay wasduseexamine cell viability according to a previous
method (Vichai and Kirtikara, 2006). Briefly, cellwere fixed and stained with 10% (wt/vol)
trichloroacetic acid. A 10 mM Tris base solutionsmvased to dissolve the protein-bound dye. A
microplate reader was used to determine the OD1@trdn. Cell viability (%) was presented after
adjusting for the control.

2.7.LDH

An enzyme-linked immunosorbent assay (ELISA) wasdusn the LDH Cytotoxicity Assay Kit
(Thermo Scientific, Waltham, MA, USA) accordingttee manufacturer’s instructions.

2.8. Satistical analysis

Data are expressed as the mean + standard dev{&i®dn One-way analysis of variance (ANOVA)
with Tukey's post-hoc test was used to compare multiple values. Residalales were evaluated for
independence by means of the Durbin—Watson testrs®e's correlation coefficient was used to
examine the correlation of PM (mass concentration and chemicals) and its bitivégc Statistical
analyses were performed using GraphPad vers. SMiodows. Durbin—Watson test was performed
using SPSS vers. 20 for Windows. The level of figance was set tp<0.05. All experiments were
performed in quintuplicate.

3. Results and Discussion

3.1. Characterization of PM,5

Average PMsconcentrations during the study period were 104®86.7 pg-min Xi'an and Beijing,
respectively. Daily PMs concentrations in the two cities are shown in Fegl. It was found that the
PM 5 pollution level in Xi'an was consistently highdran that in Beijing in the sampling period. In
order to determine particle transport from nearbgetts to Xi'an and Beijing, back trajectories tioge
cities on pollution days are shown in Figure 2.f@#nt pollution conditions were classified as nakrm
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days, pollution episodes (PESs), dust storm per(B®)-1, and DS-2. On 26~28 March (PE), Xi'an and
Beijing suffered from heavy pollution with Pid concentrations of as high as 221.1 and 175.9 fig-m
both of the cities were mainly influenced by angfmgenic emissions with low diffusion conditionsdan
Beijing was affected by the transportation of plhis from nearby heavy-industry cities. The M
peaks on 20~23 (DS-1) and 28~29 March (DS-2) wamlyncaused by a dust storm. In Xi'an, fugitive
dust from construction sites and suburban areas thermain sources during DS-1. While during DS-2,
the high level of pollution was dominated by duahsported from the Tengger Desert, which is 800 km
away from Xi'an city. During the sampling periodSEL was mainly influenced by a dust storm from
the Otindag Sandy Land, which was only 180 km afsmay Beijing City. Pollution in DS-2 was caused
by transport from The Kirchten Desert about 600d&way from Beijing and also regional fugitive dust
emissions. The land-surface usage between thesetslesnd Xi'an and Beijing mostly are agriculture
areas in northern China. There are also some pedutaeas between the desert and the cities where
anthropogenic emissions were usually observedaharhan activities (Wu et al., 2017).

3.2. Chemical characterization of PM s

PM. s concentrations and chemical compositions thatritmried to PM;s in Xi'an and Beijing are
shown in Table 1. 73.0~91.8% of RPMmass was reconstructed by Equation S1 in supplamen
material. On normal days, the OC concentration éijily (12.8 pg-ni) was higher than that in Xi'an
(11.7 ug-rif), while the EC concentration in Xi'an (4.4 pg®qwas higher than that in Beijing (3.6
ng-m°). It was found that OC contributed more to 2\ Beijing, and the OC/EC ratio in Beijing (3.8)
was higher than that in Xi'an (2.8), which indighthat more-frequent combustion emissions would
lead to the transformation of secondary OC (SO®); NSQ*, and NH* were major ions in Pi,

and collectively contributed 45.7% and 37.8% talt®®M,s in Xi'an and Beijing, respectively, on
normal days. Concentrations and contributions e$¢hsecondary ions in Xi'an were much higher than
in Beijing, and this was mainly caused by local €swins of combustion products (such as industrial
emissions) with photo-oxidation. It was also fouhdt the contribution of N obviously increased on
pollution days due to combustion activities, whileDS periods, N@ and NH" contributions to PMs
showed an obvious decreasing trend. As an indiatotineral dust (Zhang et al., 2011),°Cahowed
higher contribution in Beijing than in Xi'an, whidhdicated that fugitive dust from deserts contr#ul
more to PMs in Beijing. During DS-1 in Beijing, the contriboti of C&* was as high as 11.3%,
indicating a major contribution of fugitive dustsiead of anthropogenic emissions during the dust
periods.
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S showed higher contributions in Xi'an (3.3%) tharBeijing (2.0%) on normal days, and showed the
highest concentration among the detected elemesiich was mainly contributed by anthropogenic
activities in the local region. As an indicatorastistal origin, Ca and Fe respectively contribu@et?o
and 0.5% in Xi'an and 2.7% and 1.2% in Beijing ammal days. During DS-1, the concentration of Ca
was highly correlated with FeRt=0.95) in Beijing, while C& showed a low correlation with Fe
(R?=0.26), indicating a high contribution of dust stosources with elemental Ca. Respective Fe/Ca
ratios in Xi'an and Beijing were 2.27 and 0.49 asrmal days. During DS periods, the Fe/Ca ratios
showed lower levels in Xi'an, which were 0.84 an@1lduring DS-1 and DS-2, respectively; while in
Beijing, Fe/Ca ratios increased to 0.61 (DS-1) arid (DS-2). Compared to Fe/Ca results in desdrt so
in China of 0.57 (Ta et al., 2003), the PjMbn dust transport days, especially in Beijing (DSwas
similar to characteristics of Asian dust (Cao et 2008). Beijing was more affected by the transpbr
dust from the nearby desert in Inner Mongolia, Whiesulted in higher contributions of dust to BM

The source profile for dust from BMin the Tengger Desert is shown in Table S1. CaFndere the
most abundant constituents in the dust sample, gnadnich, Ca showed the highest contribution of
6.2% followed by Fe (3.9%). Abundant crucial maksriwere indicated by OC, which contributed 2.7%
to the dust sample. The relatively high concerdgratif OC was mainly from carbonate carbon, which is
also one of the main constituents of dust. EC veaglatected in the sample due to the location biing
away from highways and residential areas. As tdwrapbgenic sources of these components, they
always showed low concentrations in dust, of whitths” and SQ* only contributed 0.3%, while Zn,
Pb, Ni, Cu, and Hg were in the range of 0.004%-~®01Comparing with dust profiles from other
deserts (i.e. Chinese Loess Plateau, TaklimakarerDesinjiang Gobi, et al.), the dust showed the
similar patterns that organic carbon, Ca and Fetteemajor contributors, and contributions of other
elements differed from each other slightly (Wulet2011a; Zhang et al., 2014). The correlationthef
chemical components between different events aeddiist sample was shown in Table S2. The
environmental PMs did not shown good correlations with the deserha due to the complex
emissions and reactions in the atmosphere. Whildeéfjing DS-1 the PMs showed moderate
correlation with the dust sample, indicated thetgbation of dust from nearby desert to Beijing.

3.3. Source apportionment

PMF was applied to identify the sources and retdationtributions of each source to PMluring the
study period in both Xi'an and Beijing. Resultstbé source apportionment for the two cities andlydai
contributions of each source are shown in Figurar®] the identified source profiles are shown in
Figure S1. Coal combustion (37.2%) was the domicantributor to PMs in Xi'an, while secondary
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inorganic aerosols (SNAs) (31.5%) showed the higlestribution in Beijing. In addition, vehicle
emissions were the second-highest contributor tg fiMboth cities, accounting for 21.3% in Xi'an and
19.7% in Beijing. It was found that the greateshtdbutions to PMs were mostly by fossil fuel
combustion and secondary products (i.e., the sunBMAs, vehicles, coal, and biomass) which
accounted for 85.4% in Xi'an and 68.7% in Beijingdhereas Xi'an suffered more from primary
pollution, Beijing was more polluted by secondagyasols. Dust had a high contribution (18.2%) in
Beijing, which was due to being more closely lodate the desert area and the transportation route.
Source profiles in this study were consistent vathvious studies (Wang et al., 2015; Zhang et al.,
2013), and compared to previous results, the dmuttan of dust in spring was higher than in other
seasons in both Xi'an and Beijing. Daily variationsource contributions showed that during DS-d an
DS-2, dust emissions accounted for 20%~30% in Xiégad over 40% in Beijing, indicating the
transport of dust during pollution episodes.

3.4. Bioreactivity of PM;5

To investigate the bioreactivity caused by R2Mollected in Xi'an and Beijing during the studyrioel,
cell viability and LDH (an indicator of cytotoxigit were determined in A549 cells. Daily variabéi

in cell viability and LDH after PMs exposure are shown in Figure 4. PMollected from the Tengger
Desert served as a dust control. Tengger DesegtsRMMs pure control particles with no interactions
with pollution during transport. We observed thatl wiability more significantly §<0.05) decreased
after exposure to PM during a PE and DS-1 in Xi'an and Beijing thaneafexposure to Tengger
Desert PMs. Similarly, LDH significantly p<0.05) increased after exposure to 2Muring a PE and
DS-1 in Xi'an and Beijing than after exposure tongiger Desert Pk Notably, there was distinct
difference of the PMs bioreactivity between the two DS events. We ob=grthat PMs from DS-1
caused alteration in cell viability and LDH in Xiiaand Beijing. But PMs collected from Beijing
caused significant alteration than PMcollected from Xi'an during DS-2. Together, thesults
suggested that the BMmixture and/or chemical reconstruction could hageurred in the atmosphere
during transport from the desert. Next, we obsertteat the cell viability significantly p<0.05)
decreased after P exposure during a PE and DS-1 compared to norey th Xi'an, whereas cell
viability significantly (p<0.05) decreased after B¥exposure during DS-1 compared to normal days in
Beijing. Also, cell viability was significantlyp&0.05) reduced by PM during DS-1 compared to DS-2
in Xi'an. As to cytotoxicity, we observed that BMcaused significantp&0.05) increases in LDH
compared to normal days in both Xi'an and Beijib®H significantly (p<0.05) increased after Rl
exposure during DS-1 compared to DS-2 in Xi'an. Sistently, a previous report showed that PM

11
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collected from dust storms induced decreases invaility and LDH production (Naimabadi et al.,
2016), inflammatory responses (Lei et al., 2004 taiabe et al., 2015), and DNA damage (Meng and
Zhang, 2007). Notably, Watanabe and colleagues5(26iiserved that PM collected from different dust
storm periods in Japan had differéntvitro inflammatory potential§Watanabe et al., 2015). If desert
dust has a lower bioreactive potential before farts the pollutant interactions or chemical absorp
onto particle surfaces could modify the particlerbactivity. Therefore, local pollution emissiorusces
could have distinct effects upon Rybioreactivity during DS periods.

3.5. PM,5 bioreactivity and emission sources

The bioreactivity of PMs showed significant differences between a desegiroand a PE or DS.
However, results could not represent contributiohsocal pollution emissions to the bioreactivity b
PM.s in downwind areas. To understand the effects of £émitted from different emission sources
(based on source apportionment), we correlatedbibeeactivity to PM5s levels with the emission
sources. First, we found that PMwas negatively correlated with cell viability dogi normal days in
Xi'an, whereas PWs was positively correlated with LDH during dustyydgDS-1 and DS-2) in Beijing
(Table 2). To understand the contribution of RMbioreactivity during the entire study period (all)
normal days (normal), and dust storms (dust), FiBVels emitted from six sources (i.e., biomass|,coa
industry, vehicles, SNAs, and dust) were correlatétt PM, s bioreactivity (cell viability and LDH)
(Table 2). We observed that cell viability and LMdre significantly associated with BMlevels from
industrial and vehicle emissions during the erdtrely period in Xi'an, and associations of cellbiigy

and LDH with industrial and vehicle were also olsdron normal days. Notably, cell viability and
LDH were correlated with Pk from biomass and industry during dust storms itaiXi As to results
from Beijing, we observed that vehicles were asdedi with cell viability and LDH on normal days and
LDH during dust storms. Sand dust from the deseof igeological origin, which commonly consists of
silicon dioxide, aluminum oxide, iron (Ill) oxidealcium oxide, magnesium oxide, etc. (Zaady et al.,
2001). Although a previous report indicated thatdsdust is able to induce inflammation (Zosky et al
2014), more evidence showed that organic fractoh®M,s collected during dust storm episodes
contributed to cell viability, LDH, and DNA damag€leng and Zhang, 2007; Naimabadi et al., 2016).
Notably, in the present study, desert dust wassigptificantly associated with cell viability or LDk
Xi'an or Beijing during the study periods. This mhgve resulted from higher contributions of local
pollutants than the dust itself. In the presentigtiPM s produced by local emission sources (such as
biomass and industry in Xi'an and vehicles in Begj)i may have contributed to the deterioration galo
pollutant emissions during dust storm periods, ilegtb increased particle bioreactivity.
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3.6. PM_5 bioreactivity and chemical components

Chemical constituents are recognized as criticéérdenants regulating particle toxicity (Lee et, al.
2014; Lui et al., 2016). The chemical profile of PMs known to be associated with emission sources
(Chuang et al., 2018); therefore, it is importanthassify contributions of chemical fractions &fl {5 to

its bioreactivity by different emission sourcessBd on our previous report, we successfully idextif
chemical contributions of PM by emission sources (source apportionment) taghattioreactivity (n
vitro results) (Chuang et al., 2018). Because of the @ats obtained daily during the study period, we
first examined the independence of the variablegréhctivity and PMs) with time using Durbin-
Watson test. The Durbin-Watson values were 0.8t6LfaH and 0.735 for cell viability in Xi'an,
whereas the values were 1.731 for LDH and 1.481cédr viability in Beijing. Therefore, Pearson's
correlation coefficients were further used to examcorrelations between chemical compounds of
associated Pl sources (biomass and industry in Xi'an and vebiaheBeijing) and bioreactivity (cell
viability and LDH) during the entire study periodllf and during dust storms (dust) (Table 3). We
observed that Gaand Zn were associated with cell viability, and @@ C&" were associated with
LDH for biomass emissions in Xi'an during the eatstudy period. Most of the chemical components
measured in this study were correlated with celbility (except for C&, Ca, and Ti) and LDH (except
for Zn) in Xi'an for industrial emissions during éhentire study period. But no correlations were
identified between vehicle-emitted chemicals anitlaability or LDH during the entire study period.
We further explored the contributions of chemicaysemission sources to bioreactivity during dust
storms. Notably, CINO®*, and Ca were associated with cell viability andH.®r biomass emissions in
Xi'an during dust storms. OC, EC, CK*, Mg**, Ca, Ti, Mn, Fe, Zn, and Pb were correlated wih c
viability and LDH for industrial emissions in Xi'aguring dust storms. We only observed that OC, EC,
SQZ, S, Ti, Mn, and Fe were correlated with LDH fohigte emissions in Beijing during dust storms.
The observations suggest that more-detailed asgoEabetween chemicals of BMand bioreactivity
could be obtained based on further analyses byce@apportionment. Our results showed that OC, EC,
acidic ions (i.e., C| NO*, and S@), and metals (i.e., Ti, Mn, Fe, Zn, and Pb) maptdbute to
increases in Pl bioreactivity during dust storm episodes. Our ltssare in line with previous findings,
for which organic fractions, acid ions, and meta&se associated with particle bioreactivity (M.a¢t
2006; Meng and Zhang, 2007; Naimabadi et al., 2016)e compare the dust storm with desert,BM
desert and dust storm BMsamples represent distinct chemical profiles. Metations, and anions are
transported by particles in the atmosphere, whicks weported to cause adverse health effects
(Alessandria et al., 2014; Ghio et al., 2012). latian of CI, NO*, and SG* may change the lung
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environment, leading to a pH imbalance. Therefateis reasonable to hypothesize that M
bioreactivity during dust storm episodes dependslamal pollution emissions or pollution during
transportation. On the other hand, desert dustsp&ayole as a pollutant carrier, which provides a
platform to intermix with chemicals on its surface.

4. Conclusions

In conclusion, this is the first study to investgacontributions of emission sources to 2M
bioreactivity during dust storm periods. EmissiarisPM, s from local pollutant sources could cause
deterioration of air quality during dust storms asll increasing particle bioreactivity. Significant
amounts of suspended sand dust may provide a iptatio intermix with chemicals on its surfaces,
thereby increasing the bioreactivity of PMduring dust storm episodes. Dust may carry pothstan

its surface to downwind areas, leading to increassd of cardiopulmonary diseases. Our findings
suggest that reducing local pollutant emission agsimay be important for reducing potential health
impacts during Asian dust storms.
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506 Table 1. Average (+ SD) mass concentration (pug-fhand chemical composition contributions to particlate matter of <2.5 pm
507

508
509
510

in aerodynamic diameter (PM: 5, %) in Xi'an and Beijing

Chemical Xi'an Xi'an Xi'an Xi'an Beijing Beijing Beijing Beijing
Species Normal PE DS-1 DS-2 Normal PE DS-1 DS-2
PM.s 96.7+33.¢ | 221.2459. | 66.8+15.° 82.946.. 79.6+38.¢ | 175.9+64.. | 49.3+15.. | 115.1+20.!
OoC 12.3+2.¢ 12.0+0.2 16.5£3.¢ 15.9+2 18.0¢5.4 14.242. 16.942.¢ 14.0¢1.7
EC 4.4+1.] 5.3+0.f 6.3+1. 7.0£1.3 4.8+1.¢ 4.910.2 4.8+1.2 4.1+C.0
cr 1.240.: 1.5+0.f 1.1+0.1 1.140.t 3.9+1.¢ 4.3+0.7 5.140.¢ 2.6+0.F
NOs 21.0+3.9 25.945.¢ 19.7+4.¢ 15.340." 20.1+¢ 23.9+4.¢ 6.8+8.] 6.7+5.¢
SC,” 17.0+4.2 11.442.7 13.3+2.] 14.343.¢ 14.4+44.7 13.743.¢ 11.142.2 7.9+1.€
NH," 7.7+2.¢ 7.8+2.2 3.5+2.¢ 4.9+1.¢ 3.3+2.0 7.442.F 0.1+C.0 1.4+1.¢
K* 1.3£0.: 1.540.: 1.140.1 1.340.1 1.1+0. 1.6£0.: 1.3£0.€ 0.7+0.¢
Mg** 0.3+0.] 0.2+0.1 0.5+0.1 0.3+C.0 0.7+0.: 0.4+0.1 1.540.¢ 0.5+C.0
ce”’ 1.5+1.5 1.940.1 1.940.c 0.8+0.: 6.8+2.¢ 3.4+1.0 11.3+1.¢ 3.6+0.¢
S 3.31+0.6¢ 2.32+0.0¢ 3.03+0.!0 2.9+0.6: 2.02+0.5¢ 2.37+0.3¢ 1.27+0.2¢€ 1.30+0.5%
Ce 0.37+0.2¢ 0.83+0.3¢ 1.0840.2! 1.02+0.2° 2.68+1.2: 1.68+0.9: 5.83+2.1¢ 2.56+0.40
Ti 0.03+0.0: 0.04+0.0: 0.05£0.0: 0.07£0.0: 0.06+0.0! 0.060.0:« 0.2740.1° 0.2710.0!
Mn 0.004+0.00: | 0.002+0.00: | 0.008+0.00: | 0.007+(.00C | 0.006+0.00. | 0.003+(.00C | 0.010+0.004 | 0.012+0.00
Fe 0.03+0.0: 0.03+(.0C 0.04+10.0: 0.05+(.0C 0.05£0.0: 0.0540.0: 0.13£0.0¢ 0.09+0.0:
Zn 0.52+0.2: 0.61+0.1¢ 0.89+0.1¢ 1.0C+0.1% 1.18+0.f 1.06+0.4¢ 3.59+1.4° 2.60+0.3¢
Pt 0.38+0.4- 0.15+0.0: 0.18+0.1: 0.66+0.10 0.15+0.0¢ 0.21+004 0.15+0.1: 0.18+0.10
Vv 0.10+0.04 0.08+0.0: 0.08+0.0¢ 0.11+0.0: 0.13+0.0:¢ 0.1+0.0¢ 0.13+0.0¢ 0.08+0.0:

PE, pollution episode; DS, dust storm period; O@aanic carbon; EC, elemental carbon.
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511
512
513
514

515
516

Table 2.Correlations of the bioreactivity (cell viability and cytotoxicity-related lactate dehydrogenase (LDH)with particulate
matter of <2.5 um in aerodynamic diameter (PM;s) and PMF-sourced PM s from biomass, coal, industrial, vehicle, secondary

inorganic aerosol (SNA), and dust storm (dust) emssons during the entire study period (All), normaldays (Normal), and dust

storms (Dust) in Xi'an and Beijing

Xi‘an Beijing
All Norma Dusi All Norma Dust
Cell Cell Cell Cell Cell Cell
viability -DH viability -DH viability -DH viability -DH viability -DH viability -DH

PM.s -0.30t | 0.10C | -0.463* | 0.237 0.50C | -0.54C | 0.04< 0.26¢ | -0.03: | 0.441 | -0.187 | 0.938*
PM, semission sourct

Biomas: -0.22¢ | 0.261 | -0.26¢ | 0.257 | -0.922* | 0.930* | -0.27z | 0.13¢ | -0.12¢ | 0.06t | -0.771 | -0.30:
Coa -0.00¢ | -0.157 | -0.11% | -0.12C | O.77¢ | -0.78z | 0.267 | -0.25Z | 0.44¢ | -0.30z | -0.34¢ | -0.21(
Industria -0.693" | 0.663* | -0.659* | 0.673" | -0.939" | 0.950* | 0.21¢ | -0.007 | -0.06¢ | 0.437 | -0.60: | 0.46t
Vehicle -0.567* | 0.419* | -0.695* | 0.581* | 0.12¢ | -0.13¢ | 0.19¢ | -0.15z | -0.542* | 0.496" | -0.40¢ | 0.922*
SNA -0.287 | 0.08< | -0.317 | 0.180 | -0.47t | 0.437 | -0.011 | 0.20¢ 0.14: 0.26: | -0.57Z | 0.70¢t
Dust -0.247 | 0.32¢ | -0.07% | 0.17¢ 0.62: | -0.66C | -0.18C | 0.37¢ | -0.23: | 0.21¢ 0.44: 0.59¢
* p<0.05
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517 Table 3. Correlations between chemical components particulate matter of <2.5 um in aerodynamic dianeter (PM.s) and the

518 bioreactivity (cell viability and cytotoxicity-related lactate dehydrogenase (LDH)) for biomass and dustrial emissions in

519 Xi'an and vehicle emissions in Beijing during the ptire study period (All) and dust storms (Dust)

Xi'an Beijing
All Dust All Dust
Biomass Industrial Biomass Industrial Vehicle Védic
vigb(?llilty LDH vigb(?llilty LDH vigb(?llilty LDH vigb(?llilty LDH vigbei”ty LDH vigbei”ty LDH
OC | -0.279 | 0.484* | -0.485* 0.555*| -0.586 | 0.624| -0.967* | 0.959*% 0.313 | -0.326| -0.349 0.839*
EC | -0.354| 0.527* | -0.534* 0.599*| -0.611 | 0.647| -0.981* | 0.973* 0.260 | -0.265| -0.463 0.863*
CI | -0.262 | 0.406|-0.529*| 0.551*| -0.845*| 0.864*| -0.911* | 0.892* 0.232 | -0.244| -0.631 0.63P
NO* | -0.143 | 0.269]-0.564*| 0.585*| -0.960*| 0.962*| -0.822 |0.800*| 0.207 | -0.203| -0.727 0.568
SO | 0.043 0.100 | -0.553*| 0.557*| -0.551 | 0.587| -0.792 0.788 0.123 -0.064 -0.56Y.858*
NH; | 0.192 | -0.214|-0.651*| 0.610*| -0.359 | 0.332| -0.732] 0.728 0.054 -0.013 -0.381 0.f05
K* -0.220 | 0.317|-0.597*| 0.635*| -0.739 | 0.764| -0.894* | 0.885* 0.133 | -0.139| -0.723 0.56}
Mg®* | -0.263 | 0.495|-0.430*|0.505%| -0.645| 0.677| -0.839* | 0.823* 0.255 | -0.257| -0.569 0.600
cd* | -0.519* | 0.592%| -0.336 | 0.426%| -0.859 | 0.876| -0.701] 0.670 0.287 -0.338 -0.42 0.475
S -0.066 | 0.228]|-0.514*| 0.509%| -0.571| 0.605] -0.810 0.80p 0.098 -0.067 -0.64¥.846*
Ca -0.375| 0.551| -0.3110.521* -0.639*|0.673*| -0.967* | 0.956* 0.212 | -0.225| -0.38§ 0.698
Ti -0.188 | 0.408| -0.3490.562* -0.482 | 0.520| -0.983* | 0.974* -0.051| 0.262 -0.065 0.949*
\% -0.270 | 0.253|-0.465*|0.409*| -0.539 | 0.527| -0.807] 0.79F 0.236 -0.002 0.477 0.649
Mn | -0.238 | 0.441|-0.478*|0.528* -0.520 | 0.546| -0.887* | 0.873* 0.080 0.005 -0.380 0.815*
Fe -0.250 | 0.482|-0.463*|0.623*| -0.609 | 0.643| -0.974* | 0.963* 0.086 0.043 -0.205 0.943*
Zn | 0.391* | -0.133 |-0.387*| 0.363| -0.122| 0.114 -0.992* | 0.986* 0.121 | -0.100| -0.709 0.73D
Pb 0.046 0.073|-0.578*| 0.608*| -0.441| 0.443| -0.871* | 0.851* 0.292 | -0.286| -0.567 0.608

520 OC, organic carbon; EC, elemental carbon.

521

* p<0.05
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523 Figure 1. Daily variations in particulate matter of <2.5 um in aerodynamic diameter (PM5)
524  concentrations in Xi'an and Beijing.

525

23



526
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527
528 Figure 2. Back trajectories for Xi'an and Beijing on polluted days. Red lines, Pollution Episode;

529 green lines, Dust-1; blue linesDust-2.
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530
531 Figure 3. Sources and relative contributions of edcsource to particulate matter of <2.5 um in aerodgamic diameter (PM, 5)

532 by positive matrix factorization (PMF) during the sampling period in both Xi'an and Beijing.
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533

534 Figure 4. Sequential bioreactivity caused by particlate matter of <2.5 um in aerodynamic diameter (PMs) at 50 pg/mL in
535 A549 cells, including cell viability (% control) ard cytotoxicity-related lactate dehydrogenase (LDHJuring the study periods.
536 The cell viability and LDH caused by PM s from the desert, normal days, pollution episode, wbt-1 (first dust storm), and
537 dust-2 (second dust storm) in Xi'an and Beijing. 1<0.05.

538
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Highlights

® Contributions of PM,5 emissions to bioreactivity during dust storm were
investigated.

® Emissions of from local PM; 5 sources caused deterioration of air quality during
dust storms.

® Sand dust interacted with chemicals leading to increase of PMsbioreactivity.

Key words: air pollution, cell viability, inflammation, oxidative stress, wind speed.



