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a b s t r a c t

Ambient concentrations of fine particulate matter (PM2.5) concentration is often used as an exposure
surrogate to estimate PM2.5 health effects in epidemiological studies. Ignoring the potential variations in
the amount of outdoor PM2.5 infiltrating into indoor environments will cause exposure misclassification,
especially when people spend most of their time indoors. As it is not feasible to measure the PM2.5

infiltration factor (Finf) for each individual residence, we aimed to build models for residential PM2.5 Finf
prediction and to evaluate seasonal Finf variations among residences. We repeated collected paired in-
door and outdoor PM2.5 filter samples for 7 continuous days in each of the three seasons (hot, cold and
transitional seasons) from 48 typical homes of Shanghai, China. PM2.5-bound sulfur on the filters was
measured by X-ray fluorescence for PM2.5 Finf calculation. We then used stepwise-multiple linear
regression to construct season-specific models with climatic variables and questionnaire-based pre-
dictors. All models were evaluated by the coefficient of determination (R2) and root mean square error
(RMSE) from a leave-one-out-cross-validation (LOOCV). The 7-day mean (±SD) of PM2.5 Finf across all
observations was 0.83 (±0.18). Finf was found higher and more varied in transitional season (12e25 �C)
than hot (>25 �C) and cold (<12 �C) seasons. Air conditioning use and meteorological factors were the
most important predictors during hot and cold seasons; Floor of residence and building age were the best
transitional season predictors. The models predicted 60.0%e68.4% of the variance in 7-day averages of
Finf, The LOOCV analysis showed an R2 of 0.52 and an RMSE of 0.11. Our finding of large variation in
residential PM2.5 Finf between seasons and across residences within season indicated the important
source of outdoor-generated PM2.5 exposure heterogeneity in epidemiologic studies. Our models based
on readily available data may potentially improve the accuracy of estimates of the health effects of PM2.5

exposure.
© 2017 Elsevier Ltd. All rights reserved.
by Dr. Hageman Kimberly Jill.
An Road, Shanghai 200032,

Zhongshan Road, Shanghai

Kan), xuhuihui@scdc.sh.cn
1. Introduction

Epidemiologic studies have consistently suggested fine partic-
ulate matter (PM2.5) as a risk factor for adverse health effects (Pope
and Dockery, 2006). However, interpretation of findings from these
studies have been hampered by uncertainties in exposures, because
outdoor concentrations were universally used as an exposure
proxy, even though most individuals spend more than 80% of their
time indoors (Leech et al., 1996; Klepeis et al., 2001; EPA, 2013).
Although it has been found indoor PM2.5 commonly correlatedwith
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ambient concentrations as outdoor PM2.5 can enter the indoor
spaces (Chen and Zhao, 2011), spatial and temporal variations of
PM2.5 outdoor-to-indoor transport haven't been fully understood,
which is needed for exposure assessment methods improvement.

PM2.5 infiltration factor (Finf), defined as the equilibrium pro-
portion of outdoor fine particles that penetrates indoors and re-
mains suspended (Chen and Zhao, 2011), was useful for quantifying
the fraction of the total indoor particles with outdoor origin.
Studies conducted in North America and Europe found substan-
tially spatial and temporal variation of PM2.5 Finf (Chen and Zhao,
2011), which indicates that ignoring potential variations in the
outdoor-indoor PM2.5 infiltration would result in exposure
misclassification (Allen et al., 2007; Meng et al., 2005; Long et al.,
2001) that could further bias health effect estimates.

Particle-bound sulfate or sulfur has been commonly used to
estimate PM2.5 Finf for residential homes (Wallace and Williams,
2005; Dockery and Spengler, 1967; Sarnat et al., 2002), because it
is abundant in ambient particles, especially in the submicron par-
ticle size range (H€anninen et al., 2004) and with few indoor sources
(Sarnat et al., 2002). This method requires both indoor and outdoor
pollution measurements. However, it is extremely challenging to
measure PM2.5 Finf for all individual residences in large population
studies and establishing Finf prediction models with available data
on housing, environment and activities factors (Clark et al., 2010)
could be a feasible solution.

Previous studies showed that PM2.5 Finf were differently influ-
enced by residential factors between regions. Hystad et al (2009)
used temperature, building value, and heating approaches to pre-
dict 54% of infiltration among detached residences from the U.S and
Canada (Hystad et al., 2009). Chan et al (2005) found year of con-
struction, size of dwelling and category of dwelling energy effi-
ciency were important predictors of PM infiltration across the U.S.
(Chan et al., 2005).

According to these previous studies, predictors of Finf varied
with regions and climates and the accessibility of some variables
may differ from regions as well. Finf models therefore may not be
transferable to other locations. In China, only a limited number of
studies have evaluated the variation of residential PM2.5 Finf be-
tween residences and within residence across seasons (Shi et al.,
2015). In addition, even fewer studies explained the variation of
PM2.5 Finf through modeling methods. In this study, we aim to es-
timate the infiltration of PM2.5 in typical homes of Shanghai, China
and to investigate key factors of residential PM2.5 Finf by estab-
lishing prediction models.
2. Methods

2.1. Study design

In this study, residences from the downtown area of Shanghai
were recruited through flyers. To rule out the possibility of signif-
icant indoor PM or sulfur sources, such as smoking, frying, grilling
and candle burning (Gorjinezhad et al., 2017; Amouei Torkmahalleh
et al., 2017), we excluded residences with the following residences:
1) residences with smoking family members; 2) those using coal or
wood as cooking fuels; 3) thosewith open kitchens; 4) those having
habits of candle burning.

Among residences that met our criteria, apartment and Shiku-
men (a traditional Shanghainese architectural style characterized
by brick-wood structure houses with shared stone gates and patios
with lanes and alleys) were selected since they were typical
building types in Shanghai and comprise more than 50% of the total
housing stock of the city according to the Shanghai Yellow Pages.
2.2. Data collection

A total of 48 recruited residences were eventually monitored
between June 2013 and January 2014. Indoor and outdoor sampling
were conducted at participants’ homes. For indoor sampling,
equipment was set in the middle of the main activity room away
from kitchens, air conditioners and ventilation. Outdoor sampling
equipment was placed in the back yard, away from all structures;
whereas for high-rise apartments the outdoor samplers were
extended approximately 1-m out of an available window, with any
cracks being sealed to prevent air exchange. At each residential site,
measurements were conducted for three 7-day periods repre-
senting hot, cold and transitional season. All 48 homes had indoor
and outdoor sampling equipment running simultaneously in both
transitional and cold seasons. For the hot season, indoor PM2.5 of 48
homes were monitored, however, only 19 homes had outdoor
sampler due to the limited equipment availability.

We used samplers with a 2 L/min pump (PCXR8, SKC Inc., PA,
USA) and a PM2.5 impactor for indoor and outdoor sampling. To
prevent overloading, effectively 72-h samples were collected on
pre-weighed 37 mm Teflon filters (225e8303, SKC Inc., PA, USA)
using a programmed schedule for each sampling event. All filters
were pre-conditioned for 48 h prior to weighing at a constant air
temperature of 20 �C ± 1 �C and constant relative humidity (RH) of
50% ± 5%. Field blanks comprised 10% of the total number of
collected samples, and blank-corrected PM2.5 mass concentrations
were determined following gravimetric analysis. PM-bound sulfur
in the filters was analyzed using energy dispersive X-ray fluores-
cence (Cooper Environmental Services, Portland, OR, USA). Real-
time indoor and outdoor temperatures and relative humidity dur-
ing each sampling period were recorded using data loggers (HOBO
U10-003).

Information of resident behaviors related to Finf and residence
characteristics were gathered through a main questionnaire at
recruitment, including building type and year constructed, family
members, presence of air conditioning (AC) and heating facilities,
presence of air filters/cleaners and sources of indoor particles
(cooking fuel type and habits). For behaviors that vary seasonally or
typical activities that may occur occasionally, participants were
asked to record them with detailed information in a structured
questionnaire during each sampling period, including activities
related to ventilation, use of AC/heat, time and frequency of cooking
and cleaning, and guest smoking.
2.3. Finf calculation

Finf of PM2.5 was calculated based on sulfur infiltration factor.
First, we calculated the sulfur infiltration factor using Eq. (1) for
each residence based on the assumption that there are typically no
indoor sources of sulfur.

Finf
S
i ¼ CI

S
i/COS i (1)

where i means individual-specific; Finf
S
i is PM-sulfur infiltration

factor for residence i; CI
S
i and COS i are the indoor (I) and outdoor (O)

concentrations of sulfur for residence i, respectively.
Previous studies have reported that Finf PM2.5 (Finf of PM2.5) may

differ from that of PM-bound sulfur possibly due to the change of
sulfur proportion on PM2.5 during the infiltration (H€anninen et al.,
2004). Thus, for each season, the observed difference in PM2.5 and
sulfur infiltration factors was then corrected using the ratio of the
corresponding regression coefficients according to Eq. (2).

Finf
PM2.5

i ¼ (bPM2.5/bS)s � Finf
S
i (H€anninen et al., 2004) (2)
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where i and s means individual-specific and season-specific; Finf
PM2.5

i and Finf
S
i are PM2.5 and PM-sulfur infiltration factor for

residence i, respectively; bPM2.5 and bS, respectively, are the slopes
of PM2.5 and sulfur indooreoutdoor regression for each season
(Table 3).

For data quality control, we excluded sampling data if (1) the
sampling pump achieved less than 75% of the programmed
schedule (i.e. effective sampling time less than 54 h); (2) the flow
rate failed to maintain at 2 L/min (±0.2 L/min) from the start to the
end of sampling. Eventually, 31 out of 144 total monitoring events
(21.5%) were removed from analysis, leaving 113 monitoring events
suitable for calculating Finf.

2.4. Model building

Stepwise-multiple linear regressionwas applied to construct Finf
PM2.5 models. We included temperature and relative humility,
residence type, building age of residence, floor, daily cooking fre-
quency, cooking fuel type, use of kitchen ventilators when cooking,
area of the monitored room, window opening behavior, AC/heat
use behavior as potential predictors because some of these vari-
ables were identified to relate with Finf in previous studies (Chen
and Zhao, 2011; Clark et al., 2010; Allen et al., 2012) and most of
them were relatively easy to collected.

A three-stage approach was used for model establishment. First
step was evaluating univariate regressions of the Finf

PM2.5 with all
available potential predictors. The predictor giving the highest
adjusted R2 was selected as the starting model for inclusion if the
direction of effect was as defined a priori [e.g. windows opening
would increase the Finf PM2.5 (positive direction) because of the
increased ventilation]. Second, a manually supervised forward
regression analysis was conducted to evaluate which of the
remaining variables further improved the model adjusted R2.
Subsequent variables stayed in the model if they met the following
criteria: 1) the adjusted R2 of the model increased by at least 0.01
(1%) to that of the previous model; 2) the coefficient of the variable
and the existing variables in the model accorded with the right
direction of effect. These criteria ensured that models involving
counterintuitive associations be avoided, even if they give a
stronger basis for prediction (as indicated by adjusted R2 value and
RMSE). This process continued until no more variables met the
criteria. As a final step, we added indicator variables of “day of the
week” and “day” of sampling in themodels to control any unknown
temporal trends in PM2.5 concentrations.

Season-specific models were constructed under the assumption
that the PM2.5 Finf predictors and their model coefficients may vary
with seasons. We categorized each 7-day period into a “hot”,
“transitional” or “cold” season based on the average outdoor tem-
perature (>25 �C, 12e25 �C and �12 �C, respectively). We used
25 �C and 12 �C as cutoffs because they were supported by the data
(Fig. 1). Finf PM2.5

i greater than 1.50 were removed because it may
indicate a strong indoor sulfur source; FinfPM2.5

i between 1.0 and 1.50
were included to account for imprecision in the sulfur measure-
ments. For hot season, only 19 homes had indoor and outdoor
sampling equipment running simultaneously so that only these
data were used for model construction.

Leave-one-out-cross-validation (LOOCV) was applied for model
performance evaluation. Each season-specific model was fitted to
N-1 residences with the variables unchanged, and the predicted
concentration was estimated using the fitted model at the left-out
residence. The overall fit R2 and root mean squared error (RMSE)
between the predicted and estimated concentrations in three sea-
sons and for all residences were calculated to represent the model
performance.

The statistical tests were two-sided, and values of P < 0.05 were
considered statistically significant. All data analysis were per-
formed using R software (Version 2.15.3) with “stats” package.
3. Results

3.1. Residence characteristics

As summarized in Table 1, of the 48 monitored residences, 65%
were apartments, 56% were on the 1st-3rd floors and 58% were
built after 1990. Forty-four families cooked at least once per day
using natural gas as the only cooking fuel and 41 of them used
ventilators during cooking. All residences installed AC and 5 of
them had air filters/cleaners, but none of them used air filters/
cleaners during the sampling periods.
3.2. Seasonal variability of air pollution and residential activities

Table 2 presents description of residential activities related to
Finf and their seasonal variation. Median (5th-95th percentile) daily
window opening time was 11.68 (3.33, 21.67), 9.56 (1.33, 22.85),
8.89 (0.57, 24.00) hours in hot, transitional and cold season,
respectively. AC use was much more prevalent in the hot season
(6.50 (0, 46.24) hours) than the cold season (0 (0, 13.32) hours).
Information from the questionnaire indicated none of the 48 homes
used AC in transitional seasons.

Seasonal variations of outdoor PM2.5 showed as expected that
cold season recorded the highest median concentration at 77.05
(42.37, 120.10) mg/m3, whereas the lowest in hot season at 31.64
(17.35, 58.80) mg/m3. Overall, both indoor levels of PM2.5 were lower
than but comparable to their corresponding outdoor levels. In
addition, the indoor and outdoor PM2.5 concentrations were
significantly correlated and the correlation coefficient was 0.66
(p < 0.01) across all the observations (Table 3). Similar and stronger
associations between indoor and outdoor levels were observed for
PM2.5-bound sulfur. Their corresponding values were showed in
Tables 2 and 3.
3.3. Infiltration factors distribution

Table 3 provided slopes produced by indoor versus outdoor
regression analyses. Consistent with previous studies (H€anninen
et al., 2004), bS is slightly larger than bPM2.5 among different sea-
sons, which varied between 0.84 (cold season) and 0.94 (transition
season) for sulfur and between 0.62 (hot season) and 0.77 (cold
season) for PM2.5. Accordingly, the ratio of the corresponding
regression coefficients differed from seasons and they were 0.67,
0.81 and 0.92 in hot, transitional and cold seasons, respectively.
Then slope ratios (bPM2.5/bS) were used to correct the difference
between PM2.5 and sulfur infiltration factors.

We also found the small and statistically nonsignificant in-
tercepts of the indooreoutdoor PM-sulfur regressions. The in-
tercepts were �0.03 mg/m3 (Standard error (SE) ¼ 0.44, p ¼ 0.95),
1.24 mg/m3 (SE¼ 0.85, p¼ 0.16) and 0.51 mg/m3 (SE¼ 0.29, p¼ 0.09)
for hot, transitional and cold season, respectively. The finding
supports our assumption of the absence of indoor PM-sulfur
sources.

Table 4 compared the PM2.5 infiltration factors under different
factors, including seasons, AC use, house types and daily kitchen
use frequency. The 7-day mean (±SD) of PM2.5 Finf across all ob-
servations was 0.83 ± 0.18. Transitional season had larger and more
varied Finf (0.92 ± 0.23) compared to the other two seasons
(p < 0.05), while no significant difference was observed between
hot and cold season.



Fig. 1. Infiltration factor of PM2.5 vs. average outdoor temperature during the 1-week sampling period in cold, transitional and hot seasons.

Table 1
Description of the monitored residences.

Residences

Total monitored, n 48
Residence Types, n
Apartment 31
Shikumen 17

Built Year, n
<1950 14
1950e1989 6
1990e2000 17
>2000 11

Floor, the n th
1st-3rd 27
4th-10th 11
>10th 10

Daily cooking frequency, n
0 4
1 14
2 15
3 15

Cooking fuel type, n
No cooking or cooking outside of residence 4
Natural gas 44

Use of kitchen ventilators when cooking, n 41
Area of the monitored room, Mean±SDa, m2 18.58 ± 7.46

a SD ¼ Standard Deviation.
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3.4. Infiltration factors model

We found that income, floors, daily kitchen use frequency,
building age, building type, window open time, use time of AC,
outdoor temperatures and humidity were associated with Finf
Table 2
Distribution (P5, P50, P95)a of residential indoor and outdoor levels of PM2.5 and sulfur,

Hot season Tr

Monitored residences, n 42 31
Outdoor temperature (�C) (32.11, 32.68, 38.26) (1
Outdoor relative humidity (%) (48.80, 61.19, 64.67) (5
Window opening time per day (h/d) (3.33, 11.68, 21.67) (1
Total AC use time during sampling period (h) (0, 6.50, 46.24) 0
Outdoor PM2.5 (mg/m3) (17.35, 31.64, 58.80) (3
Indoor PM2.5 (mg/m3) (11.10, 32.30, 60.59) (3
I/O ratio of PM2.5 (0.24, 0.88, 1.27) (0
Outdoor sulfur (mg/m3) (2.53, 4.46, 9.55) (2
Indoor sulfur (mg/m3) (2.15, 4.02, 8.73) (3
I/O ratio of sulfur (0.55, 0.89, 1.14) (0

Definition of abbreviations: PM2.5-particulate matter less than 2.5 mm in aerodynamic di
a P5, the 5th centile of the distribution, P(50): the 50th centile of the distribution; P(9
(p < 0.05) in the univariate regression.
Table 5 showed results of predictor selection for season-specific

models. The model R2 were 0.68, 0.68 and 0.60 for hot, transitional
and cold season, respectively. The most consistent Finf predictors
during the hot season and cold seasonwere variables related to use
of AC and climate. Less total time of AC use (p < 0.01) were asso-
ciated with higher PM2.5 Finf in both hot and cold seasons; while
outdoor temperature (p ¼ 0.015) only influence Finf in cold season.
Outdoor RH appeared to have different direction of effect in the two
seasons; however it has a marginal significance (p ¼ 0.098) in the
cold-season model. For transitional season, the most important
predictors were floor of residence (p < 0.01) and building age
(p < 0.01). Residences on the higher floors (p < 0.01) and in the
older buildings (p < 0.01) had smaller Finf.

The comparisons between estimated and predicted Finf was
shown on Fig. 2. The overall model CV R2 and RMSE were 0.515 and
0.11, respectively. We found all data points distributed evenly at
two sides of 1:1 line further indicates reasonable agreement be-
tween estimations and prediction. For each season, model fit R2 and
RMSE was 0.34 and 0.10 for hot season, 0.48 and 0.15 for transi-
tional season, and 0.38 and 0.09 for cold season (Table 5). Much
lower R2 observed in hot and cold seasons is probably due to the
small variation of Finf-PM2.5 within season. As shown in Table 4, the
standard deviation of Finf-PM2.5 was 0.12 and 0.14 in these two
seasons compared to 0.23 for transitional season.
4. Discussion

In this study, we measured indoor and outdoor PM2.5 concen-
trations in 48 typical households in Shanghai, China for three
I/O ratio, climate and activities by seasons.

ansitional season Cold season Overall

47 48
4.45, 18.75, 24.69) (3.92, 7.29, 10.63) (5.25, 17.62, 35.18)
3.00, 64.83, 85.74) (36.89, 54.06, 63.78) (37.84, 60.71, 78.85)
.33, 9.56, 22.85) (0.57, 8.89, 24.00) (0.98, 10.63, 24.00)

(0, 0, 13.32) (0, 0, 37.76)
1.10, 39.79, 113.82) (42.37, 77.05, 120.10) (18.86, 51.12, 118.23)
1.90, 46.08, 97.27) (24.81, 69.88, 102.62) (13.93, 47.54, 101.16)
.64, 1.03, 1.37) (0.46, 0.83, 1.09) (0.44, 0.87, 1.32)
.88, 6.06, 12.11) (2.43, 4.04, 9.30) (2.53, 4.52, 10.57)
.39, 5.80, 9.58) (2.02, 3.98, 7.54) (2.15, 4.32, 8.92)
.65, 0.89, 1.09) (0.55, 0.90, 1.21) (0.57, 0.87, 1.06)

ameter; I/O ratio ethe ratio of indoor concentration versus outdoor concentrations.
5): the 95th centile of the distribution.



Table 3
Regression analysis of the sulfur and PM2.5 indooreoutdoor relationships.

sulfur PM2.5 Slope ratio

bS SE R2 N p-value bPM2.5 SE R2 N p-value bPM2.5/bS

Hot seasona 0.92 0.02 0.99 19 <0.01 0.62 0.13 0.50 19 <0.01 0.67
Transitional seasonb 0.94 0.04 0.96 29 <0.01 0.76 0.07 0.79 31 <0.01 0.81
Cold seasonc 0.84 0.02 0.98 44 <0.01 0.77 0.08 0.66 45 <0.01 0.92
Overall 0.87 0.02 0.96 92 <0.01 0.73 0.05 0.66 95 <0.01 0.84

Definition of abbreviations: PM2.5-particulate matter less than 2.5 mm in aerodynamic diameter.
a Hot season: the average outdoor temperature is higher than 25 �C.
b Transitional season: the average outdoor temperature is between 12 and 25 �C.
c Cold season: the average outdoor temperature is lower than 12 �C.

Table 4
The distribution of Finf of PM2.5 categorized by different factors.

Finf Mean ± SD Min P25a P75b Max

Observations 0.83 ± 0.18 0.50 0.73 0.91 1.50
Season*
Hot season 0.79 ± 0.12 0.58 0.70 0.88 1.06
Transitional season 0.92 ± 0.23 0.50 0.78 1.04 1.50
Cold season 0.79 ± 0.14 0.55 0.71 0.86 1.24

AC use
Yes 0.80 ± 0.23 0.55 0.63 0.91 1.50
No 0.84 ± 0.17 0.50 0.74 0.91 1.29

Daily kitchen use frequency
0 0.76 ± 0.14 0.59 0.61 0.86 0.95
1 0.83 ± 0.22 0.50 0.70 0.92 1.50
2 0.86 ± 0.20 0.58 0.70 0.93 1.29
3 0.83 ± 0.13 0.57 0.74 0.91 1.24

House type
Apartment 0.83 ± 0.18 0.50 0.71 0.92 1.29
Shikumen 0.83 ± 0.19 0.58 0.75 0.90 1.50

*: Hot season: the average outdoor temperature is higher than 25 �C; transitional season: the average outdoor temperature is between 12 �C
and 25 �C and cold season: the average outdoor temperature is lower than 12 �C.

a P25, the 25th centile of the distribution.
b P75: the 75th centile of the distribution.

Table 5
Final stepwise regression for season-specific Finf.

Predictor b SE p-value Model LOOCV

R2 adjusted R2 R2 RMSE

Hot seasona (n ¼ 19) 0.684 0.594 0.34 0.10
Intercept 0.182 0.317 0.58
Time of AC use per day (h) �0.013 0.005 <0.01
Relative humidity (%) 0.010 0.004 0.03

Transitional seasonb (n ¼ 29) 0.681 0.563 0.48 0.15
Intercept 2.373 0.752 <0.01
Floor �0.020 0.004 <0.01
Age (year) �0.005 0.002 <0.01

Cold seasonc (n ¼ 44) 0.600 0.520 0.38 0.09
Intercept 0.613 0.130 <0.01
Time of AC use per day (h) �0.010 0.003 <0.01
Temperature (�C) 0.020 0.008 0.015
Relative humidity (%) �0.002 0.001 0.098

Definition of abbreviations: AC, air conditioning.
a Hot season: the average outdoor temperature is higher than 25 �C.
b Transitional season: the average outdoor temperature is between 12 and 25 �C.
c Cold season: the average outdoor temperature is lower than 12 �C.
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different seasons. Our results showed two-to three-fold difference
of Finf across households, ranging from 0.50 to 1.50. This result was
consistent with two large-scale studies in multiple communities,
the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA
Air) (Allen et al., 2012) and the Relationships of Indoor, Outdoor,
and Personal Air (RIOPA) study (Meng et al., 1994) found similar
ranges of Finf across western residences, which are 0.2e1.0 and
0.1e1.3, respectively. Considerable spatial variation of Finf between
households supports that ignoring potential variations in outdoor-
to-indoor PM2.5 may increase exposure classification.

Temporal variability of Finf found in this study was also signifi-
cant. PM2.5 Finf reached its maximum in the transitional season,



Fig. 2. Comparisons of estimated Finf (x-axis) with values predicted from a LOOCV (y-axis) fit for the multiple regression models shown in Table 5. Dash Line represent 1:1.
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which was consistent with the previous studies (Allen et al., 2012;
Meng et al., 1994). It is plausible that temperature may influence
PM infiltration by affecting residential behaviors. For example,
Shanghai experiences relatively hot summers with average daily
highs of 32.2 �C in July and cold winters with average daily lows of
2.1 �C in January (data retrieved from Dataset of daily climate data
from Chinese surface stations for global exchange, 2013e2014,
China Meteorological Administration). Therefore, both hot and cold
weather necessitate that residences are sealed from outdoor air,
and typical homes in Shanghai use mechanical heating or cooling
for inhabitant comfort. Whereas in transitional season, less use of
AC and more window opening, could significantly enhance air ex-
change and thereby increased Finf (Clark et al., 2010; Howard-Reed
et al., 2002; Wallace et al., 2002).

Our model predictors provided further explanation for the
observed seasonal variation of Finf. In the hot season and cold sea-
son, significant variation in Finf was explained by meteorological
conditions and inhabitants’ activities. The most consistent predic-
tor is AC use, which has been reported by studies conducted in
Toronto, Canada (Clark et al., 2010) and six U.S. communities (Allen
et al., 2012). These studies also found lower Finf in homes with more
often central AC use, which may influence Finf by discouraging
windowopening and/or by increasing PM deposition on filters or in
air ducts (Howard-Reed et al., 2003). The other important pre-
dictors were humidity for hot season and temperature for cold
season. These variables probably contributed additional informa-
tion on AC use beyond those captured by questionnaire.

Built year and floor predicted a large portion of variation of
transition-season Finf. Residence age has previously been reported
to affect infiltration, although inconsistent across different studies.
This is not unexpected as tightness of the residencesmainly depend
on the buildingmethods differing across regions and over time. Our
multivariate regression model found a significant association be-
tween higher Finf with older residences and lower floors. A trend of
lower infiltration in older residence was also observed by Allen
et al. (2012), while Hystad et al. (2009) found the opposite re-
sults. No effect of residence agewas observed byMeng et al. (1994).

This study has several strengths. First, we used sulfur as an
outdoor PM2.5 tracer to estimate Finf. We carefully corrected the bias
from the change of sulfur proportion on PM2.5 during infiltration by
season. Second, the repeated measurements in three seasons al-
lows us to detect the temporal variation of PM2.5 Finf as well as to
explore the influence of occupants’ behavior between seasons.
Third, ourmodels established on readily accessible data explained a
major portion of the variance in 1-week average Finf. In addition,
LOOCV analysis implied the stable performance of prediction
models.

Our study has limitations. First, 32%e40% of the variability re-
mains unexplained by our models and there are some other
influential factors needed to be explored in the future. Second, the
sample size in this study was relatively small, and we only inves-
tigated two typical architecture types within a small geographic
area. One should be cautious when making extrapolations of these
results to other residences or other microenvironments (e.g., of-
fice). In addition, the applicability of our model results in other
parts of the world should be carefully investigated, especially for
those areas with different climate and residence characteristics.

This work may have an applicability in air pollution epidemio-
logic studies of China or even other developing country. China, as
the largest developing country, has suffered the most severe
problem of PM2.5 pollution. Given the importance of accounting for
the variation of ambient PM infiltration and the challenge of Finf
-PM2.5 measurement in individual home, our predictive models
provide a feasible solution for large-scale population studies. The
models built in this study based upon accessible variables poten-
tially allows for more accurate and precise estimates of the health
risks of PM2.5 exposure in urban settings of China. Furthermore, the
methodology of Finf PM2.5 modeling developed in this study could
be transferable to other parts of the world. Specifically, careful
correction of the difference between PM2.5 Finf and PM-sulfur Finf,
and selection of candidate predictors were two critical procedures
of Finf prediction. Lastly, this work may have implication on the
development of exposure mitigation strategies. The factors identi-
fied in our predictive models (such as AC use) influenced the
variability of Finf PM and may serve as an intervention target for air
pollution health challenges in China.
5. Conclusion

In this study, the finding of wide spatial and temporal variations
in residential PM2.5 Finf highlighted the heterogeneity in exposure
to PM2.5 of outdoor origin. Ignoring potential variations in outdoor-
to-indoor PM2.5 may increase exposure classification. Based on
relatively easily collected predictors, our predictive models of PM2.5
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Finf could explain major portion of this variation, suggesting
modeling approach can be a feasible solution for PM2.5 Finf
estimation.
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