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ABSTRACT 25 

A lack of information on the radiative effects of refractory black carbon (rBC) 26 

emitted from biomass burning is a significant gap in our understanding of climate 27 

change. A custom-made combustion chamber was used to simulate the open burning 28 

of crop residues and investigate the impacts of rBC size and mixing state on the 29 

particles’ optical properties. Average rBC mass median diameters ranged from 141 to 30 

162 nm for the rBC produced from different types of crop residues. The number 31 

fraction of thickly-coated rBC varied from 53 to 64%, suggesting that a majority of 32 

the freshly emitted rBC were internally mixed. By comparing the result of observed 33 

mass absorption cross-section to that calculated with Mie theory, large light 34 

absorption enhancement factors (1.7–1.9) were found for coated particles relative to 35 

uncoated cores. These effects were strongly positively correlated with the percentage 36 

of coated particles but independent of rBC core size. We suggest that rBC from open 37 

biomass burning may have strong impact on air pollution and radiative forcing 38 

immediately after their production.  39 
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1. Introduction 40 

Black carbon (BC) is produced during the incomplete combustion of 41 

carbon-containing materials, and it is the dominant light-absorbing form of 42 

atmospheric particulate matter for visible and infrared wavelengths of light (Bond et 43 

al., 2013). Light absorption by anthropogenic BC particles can perturb the Earth’s 44 

radiative balance and in so doing cause warming aloft and surface dimming on both 45 

regional and global scales (Ramanathan and Carmichael, 2008; Booth and Bellouin, 46 

2015). Climate modeling studies indicate that BC is the second largest contributor to 47 

current global warming after carbon dioxide (CO2) (Jacobson, 2001; Bond et al., 48 

2013). In addition, BC plays an important role in haze pollution through its impacts 49 

on the aerosol-planetary boundary layer (Ding et al., 2016). Further, BC is associated 50 

with adverse impacts on human health and crop yields (Tollefsen et al., 2009; Li et al., 51 

2016), and it also has been linked to reductions in precipitation and negative 52 

influences on terrestrial and aquatic ecosystems (Forbes et al., 2006; Hodnebrog et al., 53 

2016). 54 

Estimates from modeling studies indicate that the direct radiative forcing caused 55 

by BC is about +0.71 W m-2, but the uncertainty of the estimates is large, ~90%, 56 

ranging from +0.08 to +1.27 W m-2 (Bond et al., 2013). One of the difficulties in 57 

making reliable estimates of BC radiative effects is that the calculations are sensitive 58 

to whether the particles are treated as internally- or externally-mixed with non-BC 59 

materials (Bauer et al., 2010). Furthermore, there also are still uncertainties 60 

concerning the effects of BC mixing state on light absorption. Both laboratory studies 61 

and field measurements have shown that particles’ light absorption can be enhanced 62 

by the internally-mixed BC. For example, Liu et al. (2015) demonstrated clearly that 63 

coatings can substantially enhance light absorption, with the magnitude strongly 64 

depending on extent of the BC coatings and their sources. Wang et al. (2014a) 65 

reported an absorption enhancement of 1.8 in a polluted urban city of China due to the 66 

large percentage of coated BC particles. Peng et al. (2016) found an absorption 67 
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amplification factor of 2.4 for BC particles after they aged several hours. In contrast, 68 

however, Cappa et al. (2012) observed a small BC absorption enhancement of only 6% 69 

at two sites in California, and the effect increased weakly with photochemical aging. 70 

Lan et al. (2013) similarly found that coated BC particles only amplified light 71 

absorption by ~7% in an urban atmosphere of South China. These discrepancies may 72 

be attributed to several factors, such as particle’s size, shape, and coatings as well as 73 

the emission sources. Our understanding of how the BC mixing state affects the 74 

particles’ light absorption is still limited. 75 

Biomass burning is one of the largest sources for BC in the global atmosphere 76 

(Bond et al., 2013). In China, open biomass burning is an especially important 77 

contributor to BC and estimated to be 137 Gg in 2013 (Qiu et al., 2016). Of the 78 

biomass sources, the burning of crop residues (e.g., rice, wheat, and corn) has its most 79 

significant impact on BC emissions during the summer/autumn harvest seasons. The 80 

traditional method of “slash and burn” agricultural is often used to clear fields of 81 

leftover plant residues and return nutrients to the soil. Although the Chinese 82 

government has taken measures to prohibit the open burning of agricultural crop 83 

residues, local enforcement of the regulations is still uneven. According to the 84 

agricultural fire map from Zha et al. (2013), the numbers of total agricultural fire sites 85 

in China were 5514 in 2009 and 4225 in 2010, and >80% of them were distributed in 86 

the agricultural regions. Moreover, recent studies have shown that crop field burning 87 

activities not only led to local air pollution but also had effects on regional air quality 88 

through the transport and dispersal of pollutants (Long et al., 2016). 89 

Studies on BC emissions from open burning of crop residues in China have been 90 

presented in previous publications (Chen et al., 2017, and references therein), but 91 

limited investigations have specifically focused on the effects of the BC size and 92 

mixing state on particles’ optical properties. In this study, a custom-made combustion 93 

chamber was used to simulate the open burning of several representative types of crop 94 

residues. We demonstrate substantial light absorption enhancement of refractory BC 95 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

(rBC) in fresh biomass-burning emissions relative to uncoated particle cores. Through 96 

detailed physicochemical analyses, we show that the absorption enhancement is 97 

strongly related to the amounts of coatings on the rBC particles. The results contribute 98 

to our understanding of the optical properties of rBC particles produced through 99 

biomass burning. 100 

2. Experimental methods 101 

2.1. Combustion chamber experiment 102 

Test burns were conducted in a custom-made combustion chamber at the Institute 103 

of Earth Environment, Chinese Academy of Sciences (IEECAS) to simulate the open 104 

burning of crop residues. The combustion chamber is a ~8 m3 cavity container with a 105 

length, width, and height of 1.8, 1.8, and 2.2 m, respectively. The chamber has 3 mm 106 

thick passivated aluminum walls to withstand high combustion temperatures inside 107 

the chamber. The combustion chamber is equipped with a thermocouple, a 108 

thermoanemometer, and an air purification system. A dilution sampler (Model 18, 109 

Baldwin Environmental Inc., Reno, NV, USA) was installed downstream of the 110 

chamber to dilute the smoke before sampling. A schematic of the instrumental setups 111 

of the experiments is shown in Fig. 1. Tian et al. (2015) provided a detailed 112 

description of the structure and evaluation of this combustion chamber. 113 

Samples of rice, wheat, corn, cotton, and soybean straw and stalks were collected 114 

from seven major Chinese crop producing provinces (e.g., Shandong, Shaanxi, Hunan, 115 

Henan, Hebei, Jiangxi, and Anhui), which accounted for ~40% of total mass of those 116 

crops in China in 2015 (China Statistical Yearbook, 2016). Meanwhile, Ni et al. (2017) 117 

have pointed out that there are no significant differences in PM2.5 chemical source 118 

profiles for the same crop residues from different regions. The samples were stored at 119 

a stable temperature of ~20 °C and relative humidity of 35–45% for at least one 120 

month before burning. Aliquots of ~52 g were weighed, and the samples were burned 121 

on a platform inside the combustion chamber for ~5–10 minutes. The smoke emitted 122 
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from each test burn was first diluted with the dilution sampler and then sampled by 123 

several on-line instruments downstream. The dilution ratio was ~20–25 for most 124 

burning cases. A total of 57 tests were conducted as follows: 9 for rice straw, 10 for 125 

wheat straw, 11 for corn stalks, 15 for cotton stalks, and 12 for soybean stalks. 126 

Detailed information on each test burn is summarized in Table 1. 127 

2.2. Quantification of rBC mass, size and mixing state 128 

The mass, size, and mixing state of rBC particles were determined with a 129 

single-particle soot photometer (SP2, Droplet Measurement Technology, Boulder, CO, 130 

USA), which uses a laser-induced incandescence for the measurements (Schwarz et 131 

al., 2006; Gao et al., 2007). An rBC particle that enters the instrument is heated by an 132 

intra-cavity Nd: YAG laser (λ = 1064 nm) to its vaporization temperature, and that 133 

causes the emission of thermal radiation, which is measured by two types of optical 134 

detectors. The peak incandescence signal is proportional to the rBC mass, and it is not 135 

affected by the particle morphology or mixing state (Slowik et al., 2007). In this study, 136 

the peak intensity of the incandescence signal was converted to rBC mass using a 137 

standard fullerene soot sample (Lot F12S011, Alfa Aesar, Inc., Ward Hill, MA, USA). 138 

An atomizer (Model 9302, TSI Inc., Shoreview, MN, USA) was used to generate BC 139 

particles from the fullerene soot. After the particles passed through a diffusion 140 

silica-gel dryer, they were size-selected with a differential mobility analyzer (Model 141 

3080, TSI Inc.) before the instrumental analysis. The uncertainty of the SP2 142 

measurements is ~20%. Detailed descriptions of the SP2 calibration procedures can 143 

be found in our previous publications (Wang et al., 2014a; 2014b). 144 

The mass-equivalent diameters of rBC cores were calculated from the measured 145 

rBC masses by assuming the rBC particles were solid spheres with a density of 1.8 g 146 

cm-3 (Bond and Bergstrom, 2006), and the values ranged from ~70 to 700 nm (see Fig. 147 

2). It is important to note that the rBC core sizes measured in this way do not include 148 

the contributions of non-rBC materials to the particle diameter because those 149 

materials are vaporized as described above. The rBC mass fraction outside the lower 150 
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and upper particle size limits for the SP2 (~10%) was estimated by fitting a 151 

log-normal distribution to the measured rBC mass-size distribution (Wang et al., 152 

2016a). 153 

The rBC mixing state was characterized by the lag-time between the peaks of 154 

incandescence and scattering signals. The lag-time occurs because coatings have to be 155 

removed from the rBC core before incandescent temperatures of the cores are reached. 156 

Fig. 3 shows that the lag-times displayed a bimodal distribution with ~2 µs separating 157 

two distinct populations for all types of crop residues emissions. The rBC-containing 158 

particles with lag-times <2 µs were classified as uncoated or thinly-coated while those 159 

with lag-times >2 µs were considered to have significant amounts of coatings and 160 

therefore classified as thickly-coated particles (Wang et al., 2016b). The degree of 161 

rBC mixing is expressed as the number fraction of thickly-coated rBC and calculated 162 

as the percentage of rBC-containing particles with lag-times >2 µs. 163 

2.3. Light absorption measurements 164 

The light absorption coefficient (Babs) of particles was directly measured with a 165 

Photoacoustic Extinctiometer (PAX, Droplet Measurement Technologies, Boulder, 166 

CO) at λ = 870 nm, which uses intracavity photoacoustic technology. A laser beam in 167 

the acoustic chamber of this instrument heats the sampled light-absorbing particles, 168 

and this heating produces a pressure wave that is detected with a sensitive microphone. 169 

Additionally, PAX also can simultaneously measure light scattering coefficient (Bscat) 170 

with a wide-angle integrating reciprocal nephelometer in the scattering chamber. 171 

Before the biomass-burning experiments, ammonium sulfate and freshly-generated 172 

propane BC were used to calibrate the Bscat and Babs, respectively. The light extinction 173 

coefficient (Bext = Bscat + Babs) can be calculated from the laser power of the PAX; 174 

thus, a correction factor can be established from the relationship between the 175 

calculated Babs (= Bext - Bscat) and the measured Babs. The equation of Bext is given by: 176 

B��� = −
�

�.
��
× ln

�

��
× 10�	[Mm��]                               (1) 177 
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where 0.354 is the path length of the laser beam through the cavity in meters; 106 is a 178 

conversion factor to express Bext in Mm-1; I0 is the average laser power before and/or 179 

after calibration; and I is the laser power during calibration. Because the scattering 180 

produced by BC cannot be negligible, the Babs is calculated by subtracting Bscat from 181 

Bext. The Bscat should be calibrated first following the same calibration steps of Babs. A 182 

linear relationship is then established between extinction-minus-scattering coefficient 183 

and measured Babs. The slope of the linear regression is used as the correction factor 184 

inputted into the PAX as the new absorption factor. In this study, the same steps of 185 

absorption calibration were repeated until the correction factor was stable within ~5%. 186 

2.4. Calculation of modified combustion efficiency (MCE) 187 

The combustion conditions during each test burn were characterized by 188 

calculating the MCE, which is a function of the relative amounts of carbon emitted as 189 

CO2 and carbon monoxide (CO) (Kondo et al., 2011): 190 

MCE =
∆[�� ]

∆[�� ]!∆[��]
                                             (2) 191 

where △[CO2] and △[CO] are the excess mixing ratios of CO2 and CO, respectively, 192 

which are calculated by subtracting the combustion chamber background, that is, the 193 

air measured before ignition, from the values obtained during the test burn. Real-time 194 

CO2 and CO mixing ratios were measured with a nondispersive infrared CO2 analyzer 195 

(Model SBA-4, PP System, Amesbury, MA, USA) and a CO analyzer (Model 48i, 196 

Thermo Scientific Inc. Franklin, MA, USA), respectively. 197 

3. Results and discussion 198 

3.1. Size distributions of rBC cores 199 

The mass-equivalent diameters of the rBC cores of the burning residues were 200 

well represented by mono-modal lognormal distributions (Fig. 2), and this finding is 201 

consistent with previous observations from both laboratory and field biomass-burning 202 

studies (Schwarz et al., 2008; May et al., 2014; Taylor et al., 2014). Fig. 4a shows the 203 
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distributions of rBC mass median diameters (MMDs) of each test burn for the five 204 

types of crop residues emissions. The rBC MMDs were found in relatively narrow 205 

ranges, varying from 129–152, 136–159, 137–204, 133–157, and 132–163 nm for rice, 206 

wheat, corn, cotton, and soybean residues, respectively; with corresponding arithmetic 207 

mean values (± standard deviation, SD), also in nm, of 141 (± 7), 150 (± 8), 162 (± 208 

19), 147 (± 7), and 149 (± 9). The student’s t-tests for the rBC MMDs from the 209 

different types of fuels showed that there was a statistically significant difference at a 210 

probability for chance occurrence of <5% (p = 0.002) between rice straw and corn 211 

stalk emissions while the differences for other types of crop residues emissions were 212 

not significant (p = 0.15 to 1.0). 213 

The type of combustion, that is, whether the fire is flaming or smoldering, can 214 

lead to distinct differences in the properties of the emitted particles (Ni et al., 2015). 215 

The MCE values for the different test burns, which are a measure of how efficiently 216 

the fuels are burned (Yokelson et al., 1996), ranged from ~0.79 to 0.95, and this 217 

reflects the amount of variability in completeness of combustion from burn-to-burn. A 218 

MCE >0.9 is characteristic of the flaming phase while a MCE <0.9 represents the 219 

smoldering phase (Reid et al., 2005). Fig. 5 shows that the MMDs of the emissions 220 

correlated either weakly or insignificantly with the MCEs (r = -0.55 to 0.27 and p = 221 

0.08 to 0.84), suggesting that the smoldering or flaming conditions had limited effects 222 

on the rBC core sizes. May et al. (2014) similarly found no clear relationship between 223 

MMDs and MCEs for the burning of some individual plant species in a laboratory 224 

combustion study. It should be noted that there were no test burns occurred under the 225 

condition of MCE >0.95 in this study. Liu et al. (2014) reported that the single 226 

scattering albedo (scattering/(absorption + scattering)) from biomass burning 227 

dramatically decreased with the increasing MCE when it larger than 0.95, implying 228 

that large fraction of rBC may be produced. More rBC particles favor rBC-rBC 229 

coagulation, and thereby leads to increases in rBC core size. Thus, the bad correlation 230 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

between MMDs and MCEs in this study may be also related to the relative weak 231 

rBC-rBC coagulation under MCE <0.95. 232 

Compared with previous biomass-burning observations made with an SP2, our 233 

average MMDs fall within the lower limits of ~140–190 nm from laboratory-based 234 

biomass-burning experiments reported by May et al. (2014). However, the average 235 

MMDs found in our study are considerably smaller than those for aircraft 236 

measurements (altitudes: ~1.8–5.0 km) made in biomass-burning plumes in the 237 

ambient atmosphere (Kondo et al., 2011; Sahu et al., 2012; Taylor et al., 2014). For 238 

example, Kondo et al. (2011) found that MMDs were 177–197 nm in fresh 239 

biomass-burning plumes (age <1 day) that originated from North America and 176–240 

238 nm in aged biomass-burning plumes (age: 2–3 days) from Asia. Taylor et al. 241 

(2014) reported MMDs of 194 nm (age: ~1 day) and 196 nm (age: ~2 days) in two 242 

biomass-burning plumes from a Canadian boreal forest. Sahu et al. (2012) observed 243 

MMDs of 172–210 nm for biomass-burning plumes encountered over different 244 

regions of California. In addition to the fact that different types of biomass (e.g., crop 245 

residues versus various forest vegetation) can produce distinct MMDs, the larger 246 

MMDs in ambient biomass-burning studies may be also related to their higher MCEs 247 

compared with our laboratory study. In most cases, only an active flaming fire (e.g., 248 

MCE >0.95) can produce enough heat to convect the plume to higher altitudes, and 249 

the high MCE is favor to rBC-rBC coagulation leading to relative large MMDs. 250 

Moreover, another possible reason for the larger MMDs in the studies of the ambient 251 

atmosphere compared with our laboratory study is that atmospheric aging/coagulation 252 

processes may cause growth in rBC cores in the field as the particles in most of the 253 

ambient studies were sampled a day or more after their production. 254 

3.2. Mixing State of rBC 255 

Freshly emitted rBC particles are typically externally mixed with other aerosol 256 

components, but they become internally mixed through physicochemical aging 257 

processes in the atmosphere (China et al., 2015). In biomass-burning plumes, rBC 258 
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particles are thought to become coated with other materials in the first few hours after 259 

emission (Akagi et al., 2012). A more efficient burning phase (flaming; MCE >0.9) 260 

will favor production of rBC relative to organic aerosol, while less efficient burning 261 

condition (smoldering; MCE <0.9) will tend to produce more organic aerosol 262 

compared with rBC, leading to large formation of thickly-coated rBC particles 263 

(Kondo et al., 2011; Collier et al., 2016). As shown in Fig. 4b, the average number 264 

fraction of thickly-coated rBC is comparable among different types of 265 

biomass-burning emissions, with arithmetic means ± SD (in %) of 64 ± 2, 62 ± 2, 63 266 

± 3, 53 ± 7, and 58 ± 6 for burning straw or stalks of rice, wheat, corn, cotton, and 267 

soybean, respectively; and this shows that the rBC particles were coated even though 268 

they were freshly emitted. 269 

To investigate the potential influence of the MCE on rBC mixing state, the 270 

number fraction of thickly-coated rBC is plotted against MCEs in Fig. 6. Except for 271 

the emissions from rice straw burning, the thickly-coated rBC number fraction was 272 

found to be significantly anti-correlated (r = -0.73 to -0.65, p = 0.002 to 0.03) with the 273 

MCEs. This implies that when crop residues burn in smoldering fires, more coated 274 

rBC particles are produced compared with the particles produced by flaming fires. 275 

The larger implication of this finding is that differences in the types of both fuels and 276 

fires may affect the optical properties of the particles that are produced, and this in 277 

turn could influence their impact on radiative fluxes and hence climate. 278 

3.3. Light absorption enhancement 279 

The mass absorption cross-section (MAC, expressed in m2 g-1) relates rBC mass 280 

concentrations to light absorption, and it is one of the key variables used in radiative 281 

transfer models (Bond et al., 2013). In our study, a MAC of rBC at λ = 870 nm 282 

(MAC870) was calculated by dividing the absorption coefficient measured with the 283 

PAX by the rBC mass concentration detected with the SP2 (MAC870 = 284 

absorption/rBC). Fig. 7 shows that ~90% of the MAC870 values for all burning cases 285 

mainly fell within a relatively narrow range of 6.5–8.5 m2 g-1, which are comparable 286 
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with the values of 5.7–8.3 m2 g-1 that are influenced by biomass-burning emissions in 287 

previous studies (Kondo et al., 2009; Subramanian et al., 2010; Laborde et al., 2013; 288 

Wang et al., 2015). Average MAC870 (± SD) for the rBC particles from rice, wheat, 289 

corn, cotton, and soybean burning were 7.6 ± 0.5, 7.5 ± 0.6, 7.2 ± 0.6, 7.0 ± 0.3, and 290 

7.4 ± 1.3 m2 g-1, respectively. The t-tests showed that the differences in MAC870 291 

among the various crop types were not statistically significant at a probability of 5% 292 

(p = 0.06), suggesting that the absorption capacity of the rBC normalized by mass was 293 

independent on the type of plant matter burned. 294 

Based on the assumption of spherical for uncoated rBC particles, Mie theory was 295 

used to calculate the MAC870 of uncoated rBC particles (MAC870,uncoated) using the 296 

core sizes of rBC measured with the SP2. More details regarding the Mie algorithms 297 

can be found in Bohren and Huffman (2008). For uncoated rBC, we used a refractive 298 

index of 1.85 - 0.71i at λ = 550 nm, which is in the middle of the range suggested by 299 

Bond and Bergstrom (2006). Mie theory was first applied to estimate the MAC values 300 

of uncoated rBC at λ = 550 nm, and then those values were converted to 301 

MAC870,uncoated based on an rBC absorption Ångström exponent of 1.0 (Lack and 302 

Langridge, 2013). The average absorption enhancement was calculated by comparing 303 

MAC870 for rBC with and without coatings (Enhancement = MAC870/MAC870,uncoated). 304 

Large absorption enhancements were found in the fresh biomass-burning 305 

emissions, with average values of 1.9 ± 0.1, 1.8 ± 0.1, 1.7 ± 0.2, 1.7 ± 0.1, and 1.8 ± 306 

0.3 for straw or stalks of rice, wheat, corn, cotton, and soybean emissions, 307 

respectively (Fig. 4c). These observations suggest that light absorption for relatively 308 

fresh rBC is enhanced compared with that for uncoated particles. The refractive index 309 

of rBC is a key input parameter in the Mie model, and we bounded our calculations 310 

using the lowest (1.75-0.63i) and highest (1.95-0.79i) refractive index values 311 

suggested by Bond and Bergstrom (2006). This was done to evaluate the sensitivity of 312 

absorption enhancement calculations to the parameterization of the refractive index, 313 
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and the results show that the difference between the two extreme cases was within 314 

~15%. 315 

To further investigate the potential impacts of rBC morphology and mixing state 316 

on light absorption, we plotted the absorption enhancement values against the number 317 

fraction of thickly-coated rBC and against the MMDs. As shown in Fig. 8(a–e), 318 

except for the rice straw case, absorption enhancement was positively correlated (r = 319 

0.72 to 0.79, and p = 0.003 to 0.009) with the number fraction of thickly-coated rBC, 320 

suggesting that the magnitude of the light absorption enhancement was strongly 321 

affected by the amounts of coatings on the particles. There is a good explanation for 322 

this; that is, light absorption caused by coated rBC is “enhanced” because the coatings 323 

act as a lens that refracts more light to the particle’s core, which is called “lensing 324 

effects” (Lack and Cappa, 2010). Previous studies have shown that even if for the 325 

same amount of coatings, BC embedded within a particle of non-BC compounds can 326 

cause larger enhancement for MAC than the one attached to the surface of a non-BC 327 

particle (Fuller et al., 1999; Scarnato et al., 2013). The poor correlation for rice straw 328 

emissions here may be due to the different internal morphology of rBC compared with 329 

other crop residues emissions. However, this speculation needs further evidence in the 330 

future work. In addition to the coating amount, the rBC core size may also affect the 331 

absorption enhancement, because it provides a surface area to receive the incident 332 

light. Fig. 8(f–j) shows that there was no clear relationship between absorption 333 

enhancement and MMDs, suggesting that the absorption enhancement of coated rBC 334 

particles is independent of the rBC core size at the range of ~129–204 nm. Thus, light 335 

absorption enhancement of rBC-containing particles is apparently affected by the 336 

“lensing effects” of the coatings. 337 

4. Conclusions and atmospheric implications 338 

We investigated the physicochemical properties of rBC particles produced in 339 

laboratory studies of open biomass burning, and one main focus of this work was on 340 

the optical properties of the particles and how they were affected by coatings on the 341 
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particles. Our results showed that average rBC core size ranged from 141 to 162 nm 342 

for different types of crop residues emissions regardless of whether the fires were in 343 

the smoldering or flaming phase. Large number fractions of thickly-coated rBC (53–344 

64%) were found in the freshly emitted particles. Smoldering crop residues tended to 345 

produce more coated rBC than flaming fires. The average rBC MAC870 for different 346 

kinds of crop residues varied from 7.0 to 7.6 m2 g-1. The t-tests showed that light 347 

absorption capacity of the rBC particles was independent of the types of crop residues 348 

that were burned. By comparing the result of observed MAC870 with SP2 and PAX to 349 

that calculated with the Mie theory, it indicated that freshly emitted biomass-burning 350 

rBC particles had large light absorption enhancements compared with uncoated 351 

particles, with values of 1.7–1.9. The absorption enhancements were positively 352 

correlation with the number fraction of thickly-coated rBC, but there was no clear 353 

relationship with the rBC core size. This implies that absorption enhancement of 354 

internally-mixed rBC is the result of “lensing effects” caused by the coatings. 355 

For this study, there are at least three key implications for our findings (1) the 356 

open burning of crop residues may cause strong positive direct radiative forcing 357 

immediately after their production because a large fraction of the freshly emitted rBC 358 

particles have substantial coatings that cause increased light absorption; (2) the 359 

enhanced optical properties of rBC could contribute in significant ways to 360 

stabilization atmosphere through heating in the planetary boundary layer and in so 361 

doing depress the development of the planetary boundary layer which could increase 362 

the likelihood and severity of haze events; and (3) the presence of coatings and large 363 

absorption enhancement in rBC from fresh biomass-burning emissions implies that 364 

atmospheric aging may have limited effects on rBC light absorption although changes 365 

in the chemical composition of coatings with time could still affect how the particles 366 

interact with light. Each of these topics will be important for further research on the 367 

effects of biomass-burning emissions on the Earth’s radiative balance and climate. 368 
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Table 1. Summary experiments of open burning of crop residues. 592 

Crop residues Crop producing province 
Test 

number 
Weight (g) 

Dilution 

ratio 

Combustion 

time (min) 

Rice straw 
Anhui, Hunan, Shandong, 

and Jiangxi 
9 50.2–55.3 20–26 4–8 

Wheat straw Henan and Shaanxi 10 51.2–53.5 20–25 7–9 

Corn stalk 
Hebei, Henan, Hunan, 

Shandong, and Shaanxi 
11 50.1–55.2 22–25 5–9 

Cotton stalk 
Anhui, Henan, Hunan, 

and Shandong 
15 53.1–56.7 26–38 4–12 

Soybean stalk 
Anhui, Henan, Hunan, 

and Shaanxi 
12 51.6–57.7 15–35 4–10 
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Figure Captions 594 

Fig. 1. Schematic of the instrumental setups of the experiments. 595 

Fig. 2. Average mass size distributions of rBC in volume equivalent diameters for 596 

different crop residues emissions. The solid lines represent single mode 597 

lognormal fits. 598 

Fig. 3. Frequency distributions of the incandescence lag-times for ~1.1×104–1.5×104 599 

arbitrary-selected rBC particles from different types of crop residues emissions. 600 

The light grey and light yellow regions represent the uncoated or thinly-coated 601 

rBC particles and the thickly-coated ones, respectively. 602 

Fig. 4. Distributions of (a) rBC mass median diameter (MMD), (b) number fraction of 603 

thickly-coated rBC (FrBC), and (c) light absorption enhancement (Eabs) for 604 

different types of crop residues emissions. 605 

Fig. 5. Relationship between rBC mass median diameter and modified combustion 606 

efficiency for five types of crop residues emissions. 607 

Fig. 6. Relationship between number fraction of thickly-coated rBC (FrBC) and 608 

modified combustion efficiency for five types of crop residues emissions. 609 

Fig. 7. Frequency distribution of rBC mass absorption cross section (MAC) for five 610 

types of crop residues emissions. 611 

Fig. 8. Scatterplot of absorption enhancement versus (a–e) number fraction of 612 

thickly-coated rBC and (f–j) rBC mass median diameter for different types of 613 

crop residues emissions. The solid line fits were calculated by orthogonal 614 

regression. 615 

 616 
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Highlights: 

• Insignificant correlations were found between rBC MMDs and combustion 

conditions. 

• The fraction of thickly-coated rBC was anti-correlated with combustion 

conditions. 

• Large absorption enhancements were found in fresh biomass-burning emissions. 


