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A B S T R A C T

In this study, daily PM2.5 samples were collected at an urban site in Yulin of Northern China during a winter
season. Eight carbon fractions, 13 kinds of polycyclic aromatic hydrocarbons (PAHs), and nine water-soluble
ions in PM2.5 were measured. The light-absorption characteristics of brown carbon (BrC) both in water and in
methanol extracts were evaluated and quantified. The total quantified PAHs exhibited high concentrations
(228.4 ± 52.6 ngm−3), contributing 0.2% of the PM2.5 mass. High indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]
pyrene+ benzo[ghi]-perylene) ratio but low NO3

−/SO4
2− ratio revealed the important contribution of coal

combustion to PM2.5. The absorption coefficient (babs) for methanol extracts measured at 365 nm averaged
27.5 ± 12.0Mm−1. Light absorption by methanol extracts exhibited strong wavelength dependence, with an
average absorption Ångström exponent of 5.2 in the 330–400 nm range. The mass absorption cross section (for
methanol extracts averaged 1.4 ± 0.4m2 g−1 by normalizing babs measured at 365 nm to organic carbon mass.
A relatively strong positive relationship between babs, methanol and benzo[a]pyrene as well as with six carbon
fractions indicated the important contribution of coal burning to BrC. Source apportionment based on the po-
sitive matrix factorization receptor model and multiple linear regression showed that residential coal combus-
tion accounted for 37.4% of babs365,methanol. The estimated relative radiative forcing by methanol-soluble organic
carbon relative to elemental carbon was 36.9% at 300–400 nm.

1. Introduction

Light-absorbing aerosols have drawn growing attention in recent
years because of their important role in radiative forcing and visibility
impairment (Gelencser et al., 2003; Lukacs et al., 2007; Barnard et al.,
2008; Hecobian et al., 2010; Srinivas and Sarin, 2014). Aerosol light-
absorbing components in the atmosphere can be classified into black
carbon (BC), mineral dust and some organic carbon (named brown
carbon, BrC) (Wan et al., 2016; Wang et al., 2016a; Park and Son,
2017). BC is the most potent absorber in the visible wavelengths (Bond,
2001; Bond et al., 2013; Lihavainen et al., 2017), whereas BrC shows
prominent absorption in the near-UV region (Hecobian et al., 2010;
Lack et al., 2012; Liu et al., 2014). BrC accounts for 20%–50% of light
absorption at short wavelengths, indicating the importance of BrC in
the ultraviolet (UV) region (Kirchstetter and Thatcher, 2012; Feng
et al., 2013; Mohr et al., 2013; Jo et al., 2015). These modeling studies
suffered from substantial uncertainties, such as sources, optical prop-
erties, and chemical transformations of BrC.

BrC can absorb light based on a variety of chemical structures like
nitrated and polycyclic aromatics, phenols, humic-like substances
(HULIS), and biopolymers (Jacobson, 1999; Hoffer et al., 2006;
Desyaterik et al., 2013; Sun et al., 2013; Teich et al., 2017). Main
sources of BrC can include combustion emissions (such as biomass
burning and biofuel burning) (Bond, 2001; Kirchstetter et al., 2004),
HULIS from multiple-phase actions, and secondary organic carbon
(SOC) from photochemical oxidation or aqueous reaction processes
(Chakrabarty et al., 2010; Hecobian et al., 2010; Cheng et al., 2016;
Shen et al., 2017a). Accordingly, the variety of molecular compositions
of BrC and its mixing state with other substances make it challenging to
research BrC in particulate matter (PM) (Alexander et al., 2008). Sol-
vent extraction (using water or organic solvents) can separate a sub-
stantial fraction of organic carbon from PM (Chen and Bond, 2010;
Zhang et al., 2011). As a result, the popular optical measurement
method of BrC determines extracts absorption (Hecobian et al., 2010;
Cheng et al., 2016). For example, Hoffer et al. (2006) generated ab-
sorption spectra of the HULIS isolated from biomass-burning source
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samples collected in the Amazon basin and estimated that HULIS con-
tributed 6.4%–8.6% of the entire solar spectrum absorption. In another
study conducted in Atlanta and reported by Liu et al. (2013), absorption
by BrC was calculated using Mie theory based on size-resolved mea-
surements of water-soluble organic carbon (WSOC) absorption spectra,
and it was predicted that BrC contributed 20%–40% of total aerosol
light absorption at 350 nm. The optical properties of BrC were also
observed at an urban site in Gwangju, Korea, and the contribution of
primary biomass burning accounted 26.1% to water extract BrC ab-
sorption (Park et al., 2018). Extensive experimental data [e.g., ab-
sorption coefficient (babs), Ångström exponent (AAE), and mass ab-
sorption cross section (MAC)] are essential to evaluate light absorption
by BrC (Liu et al., 2013; Shen et al., 2017a; Yuan et al., 2016; Park
et al., 2018).

A large number of studies have been conducted in China in-
vestigating PM2.5 chemical composition, source apportionment, and
optical properties, as reviewed in Tao et al. (2017). Most of the studies
on optical properties of PM2.5 focused on black carbon (BC) and sec-
ondary inorganic species (sulfate, nitrate, and ammonium). The studies
on optical properties of BrC were limited in China (such as Cheng et al.,
2015; Cheng et al., 2016; Shen et al., 2017a, 2017b). Yulin
(36.95°–39.58°N, 107.46°–111.25°E), with a population of ~3.36 mil-
lion and an area of ~43,600 km2, is located in the transition zone be-
tween the Chinese Loess Plateau and the Mu Us Desert, Shaanxi Pro-
vince. This area is a national energy and chemical industrial center, and
coal combustion is a big air-pollution problem in Yulin (Cao et al.,
2012a; Guo et al., 2015). In addition, most previous studies usually
illustrated that biomass burning was a major contributor to BrC (Yan
et al., 2015; Shen et al., 2017b), and few studies have addressed the
important contribution of coal burning to BrC and its radiative forcing.
As a result, the objectives of the present study are 1) to investigate
chemical characteristics of PM2.5 in Yulin, 2) to reveal the optical
characteristics and sources of solvent-extracted BrC in PM2.5, and 3) to
estimate the radiative forcing contributions of BrC extracts from
(WSOC) and methanol soluble organic carbon (MSOC).

2. Methodology

2.1. Sample collection

Sampling was conducted on the roof of the 12-m high building of
the environmental monitoring station, located in a commercial-re-
sidential-traffic mixed urban site in Yulin (Fig. 1). Daily PM2.5 samples
(24-h starting at 9,30 am) were collected on 47-mm quartz microfiber
filters (Whatman, Maidstone, UK) from 19 December 2015 to 1 January
2016. (Fig. 1) using a 5 Lmin−1mini-volume sampler (Airmetrics,
Springfield, OR, USA). The quartz filters were pre-heated at 800 °C for
3 h to remove any residual carbon before using. The detail description
of filters weighting before and after sampling can be found in Shen et al.
(2009). Additional quality assurance and quality control procedures
were described in Cao et al. (2012a) and Shen et al. (2017a).

2.2. Chemical analysis

PM2.5 organic carbon (OC) and elemental carbon (EC) were de-
termined with a DRI Model 2001 Thermal/Optical Carbon Analyzer
(Atmoslytic Inc., Calabasas, CA, USA) following the improved TOR
protocol (Chow et al., 2004). The IMPROVE_A (Interagency Monitoring
of Protected Visual Environments) protocol produces four OC fractions
(OC1, OC2, OC3, and OC4 at 140 °C, 180 °C, 480 °C, and 580 °C re-
spectively, in a 100% He atmosphere); a pyrolyzed carbon fraction (OP,
determined when reflected or transmitted laser light attained its ori-
ginal intensity after O2 was added to the analysis atmosphere); and
three EC fractions (EC1, EC2, and EC3 in a 98% He/2% O2 atmosphere
at 580 °C, 740 °C, and 840 °C respectively) (Chow et al., 2004). Details
of quality assurance and control procedures were described in Cao et al.

(2005).
Water soluble inorganic ions (Na+, NH4

+, K+, Mg2+, Ca2+, F−,
Cl−, NO3

−, and SO4
2−) levels were determined using an ion chroma-

tograph (IC, Dionex 500, Dionex Corp., Sunnyvale, CA, USA). Anions
were analyzed using an ASII-HC column (Dionex Corp.) and 20mM
potassium hydroxide as the eluent. Cations were determined using a
CS12A column (Dionex Corp.) with 20mM methane sulfonic acid as the
eluent. A detailed description of the ion analysis method used in this
study can be found in Shen et al. (2008, 2009).

Concentrations of 13 kinds of priority-controlled polycyclic aro-
matic hydrocarbon (PAHs) as defined by the United States EPA were
determined: fluorine (Flu), phenanthrene (Phe), anthracene (Ant),
fluoranthene (Flua), pyrene (Pyr), benzo[k]fluoranthene (BaA), chry-
sene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF),
benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IP), dibenzo[a,h]an-
thracene (dBahA), and benzo[ghi]-perylene (BghiP) (Supelco,
American Chemical Society (ACS) standard grade, purity from 93.4% to
99.9%). PAHs were analyzed using gas chromatography with mass-se-
lective detection (GC–MS). The chromatographic conditions were as
follows: injector temperature 290 °C and detector temperature 250 °C.
The temperature ramp was an initial oven temperature of 50 °C main-
tained for 2min, increased at 5 °C/min to 280 °C, and then increased at
3 °C/min to a maximum of 300 °C for 10min. The detailed pretreatment
process and quality assurance and quality control can be found in Shen
et al. (2017b).

2.3. Optical properties of methanol and water extracts

Light absorption spectra of the methanol and water extracts were
measured over the wavelength range of 190–1100 nm using a UV–Vis
spectrophotometer (UV-6100 s, MAPADA, Shanghai, China), following
the method developed by Hecobian et al. (2010). The extraction
methods were detailed described in Shen et al. (2017b). babs of water
and methanol extracts of PM2.5 samples can be calculated as:

= − ∗ ∗ ∗

∗

b (A A ) (V portions)

ln (10)/(V L)
absλ,water/methanol λ,water/methanol 700,water/methanol ext

aero (1)

where babs is expressed in units of Mm−1 (or 10−6 m−1). Aλ and A700

correspond to measured absorbances at the specified λ and 700 nm
respectively. Vext refers to the volume of the solvent extract (50mL) for
different portions of filter. Vaero represents sampling volume, and L is
the path length of the cell (10 cm). The reference wavelength λ is
chosen as 365 nm to represent light absorption of organic aerosol in
order to be consistent with previous studies, and avoid light-absorbing
disturbance by other substances (e.g., nitrate) (Liu et al., 2013; Cheng
et al., 2016).

The wavelength-dependent AAE and babs of BrC in the solvent ex-
tracts can be described following Hecobian et al. (2010) as:

= ∗ −b K λabsλ,water/methanol
AAE water/methanol (2)

where K is a constant and λ denotes the wavelength of BrC. In this
study, AAE was calculated by linear regression fitting to log babs vs. log
λ in the 330–400 nm wavelength range.

According to Liu et al. (2013) and Shen et al. (2017b), ambient OC
concentrations for the methanol extracts was used to calculate
MAC365,methanol based on the following equation:

=MAC b /OCλ,methanol abs λ, methanol (3)

2.4. Source apportionment model for PM2.5

Positive matrix factorization (PMF) is a bilinear factor model
(Paatero and Tapper, 1994) that has been widely used in source ap-
portionment studies (Cao et al., 2012b; Tao et al., 2014; Xiao et al.,
2014; Wang et al., 2016b). The concept of PMF has been described in
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detail by Zhou et al. (2017). Water-soluble inorganic ions (NH4
+, K+,

Mg2+, Ca2+, Cl−, NO3
−, and SO4

2−), eight carbon fractions (OC1,
OC2, OC3, OC4, EC1, EC2, EC3, and OP), and PAHs (Flua, Pyr, BbF,
BkFIA, and BaP) were used as data inputs. The PMF model was run
multiple times, extracting four to six factors, and each run was in-
itialized with different starting points (changing the seed value from 1
to 20). The discussion that follows is based on the five-factor model
resulting from PMF analyses.

3. babs365, methanol source apportionment

To investigate the contributions of each emission source to
babs365,methanol, a multivariate linear regression model was constructed.

The relationships between babs365,methanol and each emission source
can be described as:

∑= + ×
=

babs methanol B Ai X365, [ ]
i j

n
ij, 1 (4)

where the quantities in brackets [Xij] represent the contributions of the
i-th emission source (units: Mm−1) on the j-th day; Ai and B represent
the regression coefficient and random error respectively; Ai×[Xij] re-
presents the predicted values of babs365,methanol from the i-th emission
source.

3.1. Radiative forcing of WSOC and MSOC relative to EC

This study used a simple model to evaluate the solar energy ab-
sorbed by WSOC and MSOC (integrated over a broad wavelength range
between 300 and 2500 nm) relative to EC. The wavelength-dependent
solar emission flux (I0 (λ)) was approximated using the clear-sky Air
Mass 1 Global Horizontal (AM1GH) solar irradiance model proposed by
Levinson et al. (2010).

The fraction of solar energy absorbed by WSOC or MSOC relative to
EC (f) can be calculated as follows:

∫

∫
=

⎧
⎨⎩

− ⎫
⎬⎭

⎧
⎨⎩

− ⎫
⎬⎭

− × ×

− × ×

( )

( )
f

I (λ) 1 e dλ

I (λ) 1 e dλ

0
MAC c h

0
MAC c h

365
365

λ
AAEWSOC/MSOC

WSOC/MSOC ABL

632
632

λ
AAEEC

EC ABL

(5)

where λ is the wavelength, MAC365 is the mass absorption cross section
for WSOC and MSOC at 365 nm, MAC632 is the mass absorption cross
section for EC at 632 nm, and hABL is the height of the atmospheric
boundary layer. For the current simplistic model,
MAC632= 8.45 ± 1.71m2 g−1 as reported by Cheng et al. (2011), and
the AAE for EC was set to one. hABL was set to 1000m because it was
found to have little influence on the computed ratio in the 200–3000m
range (Kirillova et al., 2014). AAE for MSOC and WSOC were measured
at 330–400 nm. Solar light is well approximated by the AM1GH, and no
effects of scattering (by aerosols or cloud droplets) are available.

4. Results and discussion

4.1. General description of the chemical composition of winter PM2.5 over
Yulin

Table 1 summarizes PM2.5 levels, carbonaceous components, water-
soluble ions, and PAHs in Yulin. Winter average PM2.5 was
110.6 μgm−3, which exceeded the Class II National Air Quality Stan-
dards of China (75 μgm−3). Higher winter PM2.5 levels in Yulin were
also found by Cao et al. (2012a). Daily average organic matter (OM,
estimated as 1.6×OC, Turpin and Lim, 2001) was
33.9 ± 18.5 μgm−3 during the sampling period, accounting for 33.7%
of PM2.5 mass. The mean value of EC in winter was 6.4 ± 3.4 μgm−3

and contributed about ~6.6% of PM2.5 mass. A high OC/EC ratio (3.2)
was observed during this study, which was very close to the OC/EC
ratio of coal-combustion source profiles (2.7, Watson et al., 2001). In
addition, high sulfate concentrations, but low nitrate concentrations
(with a low NO3

−/SO4
2− ratio of 0.3 ± 0.2) were also observed,

which further demonstrated that coal combustion can be expected to be
one of the major sources of winter PM2.5 over Yulin (Arimoto et al.,

Fig. 1. Location of the monitoring site and surrounding region.
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2004).
The total quantified PAHs concentrations in winter ranged from

165.5 to 386.0 ngm−3 and averaged 228.4 ngm−3, contributing 0.2%
of the PM2.5 mass. It was noted that dBahA was the most abundant
species among the 13 PAHs, accounting for 14.5% of total measured
PAHs. The PAH ratio is popular and widely used to identify sources. A
previous study reported values for IP/(IP+BghiP) of 0.18, 0.37, and
0.56 for gasoline, diesel, and coal combustion respectively (Duan et al.,
2007). In the present study, the IP/(IP+BghiP) ratio was in the
0.40–0.67 range, indicating that coal burning was the dominant con-
tributor to PAHs. The abundance of BaP and IP also supported the
important contribution of coal combustion.

4.2. Light absorption by water and methanol extracts

In this study, babs of water and methanol extracts were primarily
investigated at a wavelength of 365 nm, and the results were compared
with those from previous studies. Daily variation of babs365,water in
winter exhibited a similar pattern to babs365,methanol, with a
babs365,methanol to babs365,water ratio of ~3.4, demonstrating that me-
thanol extract was more effective in measuring BrC optical properties
than water extract. Previous studies had suggested that babs365,methanol

was always greater than babs365,water (Liu et al., 2013; Zhang et al.,
2013). These results also highlighted that water-insoluble organic
matter dominated in BrC compounds. Chen and Bond (2010) suggested
that these strongly light-absorbing methanol-soluble components are
likely large-molecular-weight PAHs, such as quinones from coal com-
bustion. The babs365,methanol to babs365,water ratio in Beijing was 2.5
(Cheng et al., 2016), which was slightly lower than in Yulin. In addi-
tion, the light-absorptive properties of solvent extracts might be dif-
ferent from those of ambient aerosols, and therefore it should be noted
that solvent-extract babs was measured for aerosol solutions rather than
airborne particles. This indicated that the optical properties of BrC
could be greatly underestimated by studies using WSOC as BrC.
babs365,methanol varied greatly from 10.9 to 53.7 Mm−1 (Fig. 2), with an
average of 27.5 ± 12.0Mm−1 (Table 1). babs365,methanol has been
compared with other cities, such as Beijing (26.2Mm−1, Cheng et al.,
2016), Xi'an (21.8Mm−1, Shen et al., 2017b) and Gwangju, Korea
(7.1 Mm−1, Park et al., 2018).

Fig. 3 shows daily variation of AAEwater and AAEmethanol

(330–400 nm) in winter. AAEwater ranged from 3.9 to 7.2, with an

average of 5.2 ± 0.8 (Table 1), which covered aged and fresh SOC and
primary sources (e.g., coal combustion, Yang et al., 2009). Similar re-
sults were reported in the Los Angeles Basin (Zhang et al., 2013), the
southeastern United States (Hecobian et al., 2010), Beijing (Cheng
et al., 2016), and Xi'an (Shen et al., 2017a). AAEmethanol varied from 3.1
to 7.4, with a mean of 4.9 ± 1.2. A similar result can be found in
Gwangju, Korea by Park et al. (2018), in which AAEmethanol ranged from
4.3 to 5.7 with an average of 4.8. AAEmethanol values were somewhat
lower than AAEwater except for ten of the sampling days, when me-
thanol extracts had a distinctive absorption band at longer wavelengths.
This should mainly reflect specific organic materials such as nitrogen-
containing organic compounds (Bones et al., 2010; Laskin et al., 2014).
On the basis of these studies, the optical sources of BrC in methanol
extracts are discussed in this paper.

Winter mean MAC365,methanol was 1.4 ± 0.4m2 g−1, similar to the
previous study measured in Gwangju, Korea of 1.3 ± 0.4m2 g−1 (Park
et al., 2018). If the MSOC to OC ratio is assumed to be 0.85 (Cheng
et al., 2016), the corrected MAC365,methanol value should be
~1.7 ± 0.5m2 g−1. The value is a little higher than in Beijing
(1.4 ± 0.3 m2 g−1), which was related to biomass burning and other
primary emissions (Cheng et al., 2016). Zhang et al. (2013) illustrated
that the corrected MAC365,methanol measured in the Los Angeles Basin,
an area characterized by anthropogenic emissions origin rather than
biomass burning, was ~1.9m2 g−1. The MAC365,methanol level normal-
ized by MSOC over Xi'an was 1.72 during winter, which is strongly
related to biomass burning and coal combustion for heating as well as
fresh SOC from aqueous reactions (Shen et al., 2017b). However, PM2.5

MAC365,methanol was only 0.69m2 g−1 during summer, which was in-
fluenced by aged SOC generated from photochemical reactions. Pri-
mary combustion emissions other than vehicle exhaust were limited
(Shen et al., 2017b). Another study in Georgia, United States, where
SOC was mainly influenced by biogenic emissions, also showed rela-
tively low summer MAC (0.3 to 0.5 m2 g−1) (Liu et al., 2013; Zhang
et al., 2013). Hence, high MAC365,methanol should be strongly associated
with primary combustion processes such as biomass burning and coal
combustion, whereas low MAC365,methanol should be associated with
SOC, especially aged SOC.

4.3. Sources of BrC

Previous studies have documented that BrC can originate from both
primary and secondary processes (Chakrabarty et al., 2010; Cheng
et al., 2011; Hecobian et al., 2010; Shen et al., 2017b). To assess the
sources of atmospheric BrC, primary organic carbon (POC) and SOC
were estimated for the sampling days using an EC tracer method as in
the following equation (Ram and Sarin, 2011):

= ×SOC OC EC OC EC– ( / )tot min (6)

= −POC OC SOCtot (7)

where OCtot is total OC and (OC/EC)min is the minimum OC/EC ratio
observed during sampling in Yulin. The estimated POC concentrations
ranged from 3.9 to 29.9 μgm−3, with an average of 14.5 μgm−3,
contributing 69.5% of the total OC mass. The fractional contributions of
SOC to OC varied from 15.3% to 59.3% (Av: 30.5 ± 12.1%).
babs365,methanol showed positive correlations with POC (r=0.91) and
SOC (r=0.85) (Fig. 4), indicating that the primary emissions con-
tribution is greater than secondary formation in winter.

Nitrated aromatic compounds, PAHs, and benzaldehydes were
found to be the most effective UV absorbers in terms of their imaginary
refractive indices and absorption wavelengths (Jacobson, 1999). In the
present study, 13 PAHs were determined to reveal the possible sources
of BrC (Table S1). For example, high BaP levels came mainly from coal
combustion (Sawicki, 1962); the IP abundance was a typical component
of diesel vehicle emissions, and BghiP enrichment was an indicator of
gasoline vehicle emissions (Guo et al., 2005). The relatively strong

Table 1
Optical properties and mass concentrations of chemical species for PM2.5

samples during winter in Yulin.

Average Standard deviation

PM2.5 (μgm−3) 110.6 73.9
TC(μgm−3) 27.3 15.2
OM(μgm−3) 33.9 18.5
OC (μgm−3) 21.2 11.5
EC (μgm−3) 6.4 3.4
OC/EC 3.2 0.5
Total Ions (μgm−3) 24.6 23.8
K+ (μgm−3) 0.5 0.6
NO3

− (μgm−3) 2.8 4.1
SO4

2− (μgm−3) 10.8 11.0
NO3

−/SO4
2− 0.3 0.2

Total PAH (ngm−3) 228.4 52.6
BaP (ngm−3) 19.0 6.6
IP (ngm−3) 18.2 5.0
BghiP (ng m−3) 14.4 5.1
dBahA (ng m−3) 32.5 9.4
IP/(IP+BghiP) 0.6 0.1
babs,water (Mm−1) 8.9 4.9
AAE water 5.2 0.8
babs, methanol (Mm−1) 27.5 12.0
AAE methanol 4.9 1.2
MAC methanol (m2 g−1) 1.4 0.4
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positive relationship between babs,methanol and BaP (r=0.67) indicated
the important contribution of coal burning to BrC. In contrast, the
correlation coefficients between babs and IP (r=0.45) or BghiP

(r=0.32) were lower than with BaP, supporting the conclusion that
vehicle emissions were not an important contributor to BrC compared
to coal combustion.

Previous studies illustrated that the BrC source contribution to light
absorption were estimated with a multivariate linear regression ap-
proach (Zhou et al., 2017; Park et al., 2018). In this study, to investigate
babs365,methanol sources, a PMF model was first used to apportion PM2.5

sources using data for the measured PM2.5 chemical species. Then a
multivariate linear regression model was used to investigate the con-
tribution of each source to babs365,methanol. Five factors were identified
from the PMF model and are presented in Fig. S1.

Factor 1 was characterized by Mg2+, Ca2+, K+, and Cl−, which
were characteristic of fugitive dust (Shen et al., 2008; Zhang et al.,
2014). Factor 2 loaded with sulfate and PAHs such as Flua and Pyr,
representing emissions from industrial coal combustion (Huang et al.,
2013; Shakeri et al., 2016). Traffic-related emissions were identified as
Factor 3 was abundance of EC2, Ca2+, Mg2+, and PAHs (Flua, Pyr, BbF,
BkFIA, and BaP) (Shakeri et al., 2016). Factor 4 loaded with NH4

+,
NO3

−, and SO4
2−, indicating a secondary formation source (Shen et al.,

2010). Factor 5 had high loadings on eight carbon fractions and PAHs,
which gave preliminary indications of emissions from combustion. In
fact, Yulin is rich in coal resources and has few emissions from biomass
burning (Guo et al., 2015). Therefore, Factor 5 was attributed to re-
sidential coal combustion. The contributions of the sources resulting
from the PMF analyses were calculated by multiple regression of the G
matrix (Paatero and Tapper, 1994) against the measured mass con-
centrations. Residential coal combustion contributed significantly to
the detected PM2.5 mass (36.9%), followed by industrial coal combus-
tion (21.8%), secondary formation (19.3%), traffic-related emissions
(11.7%), and fugitive dust (10.3%) (Fig. S2).

Fig. 5 shows the source contributions to babs365,methanol obtained
using a multivariate linear regression model. Because dust was not
present in the solvent extract, fugitive dust and traffic-related emissions
(including road dust) could not be investigated in the apportioning of
babs365,methanol. Therefore, almost 53.5% of babs365,methanol emissions
were apportioned in this study, which indicated that the light absorp-
tion of methanol extracts could have arisen from other sources like
bioaerosols or HULIS (Hoffer et al., 2006; Laskin et al., 2015). The
babs365,methanol of residential coal combustion was highest, with an
average of 11.81 ± 8.79Mm−1, accounting for 42.9% of total
babs365,methanol. The babs365,methanol values showed lesser contributions
from secondary formation (2.01 ± 2.91Mm−1) and industrial coal
combustion (0.89 ± 1.04Mm−1). It was inferred that residential coal
burning was an important contributor to BrC emissions in Yulin.

Fig. 2. Daily variations of OC, babs365 for water and methanol extracts.

Fig. 3. Daily variations of MAC for methanol extracts and AAE for water and
methanol extracts. AAE is calculated by linear regression fit to logbabs vs. logλ
in the wavelength range of 330–400 nm. MAC of the methanol extracts at a
given wavelength is calculated as: MAC λ, methanol = babs λ, methanol/OC.

Fig. 4. A strong positive relationship between the abundance of POC & SOC and
babs365,methanol.
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4.4. Evaluation of radiation forcing by BrC relative to EC

The fractional contribution of solar absorption by light-absorbing
WSOC and MSOC relative to that of EC from Yulin was estimated by the
following method suggested by Kirillova et al. (2014), as mentioned in
the methods section. Table 2 shows the fractional solar absorption of
WSOC and MSOC relative to EC. The solar energy directly absorbed by
MSOC/EC over the whole solar spectrum was 10.8 ± 5.6%, increasing
to 36.9 ± 13.5% in the UV region (300–400 nm). The absorption fig-
ures were lower than those of the biomass-burning source sample
(19.6 ± 1.0% over the whole solar spectrum and 82.8 ± 4.3% in the
UV region) (Lei et al., 2018). These results highlight that BrC emitted
from coal combustion had less influence on radiative forcing than
biomass burning.

Finally, the relative radiative forcing by WSOC/EC was also esti-
mated. The solar energy directly absorbed by WSOC/EC (3.0 ± 1.0%),
as expected, was lower than those reported during wintertime in Beijing
(11 ± 3%; Yan et al., 2015) and Delhi (6 ± 3%, Kirillova et al., 2014).
However, the relative radiative forcing of BrC has been underestimated
because the solvent extracts that babs measured were not for PM par-
ticles (Liu et al., 2013). Therefore, the contribution of BrC to radiative
forcing needs to be reassessed.

5. Conclusions

In this study, optical characteristics and source identification of
PM2.5 BrC were conducted over an energy chemical industry city of
Yulin in North China. babs365,methanol, AAEmethanol, and MAC365,methanol

of PM2.5 BrC averaged 27.5 ± 12.0Mm−1, 5.2 ± 0.8 (330–400 nm),
and 1.4 ± 0.4m2 g−1, respectively. Comparison of babs365 between
methanol and water extracts suggested that a large portion (~67.6%) of
BrC light absorption comes from water insoluble OC. Meanwhile,
higher BrC was mainly caused by primary emissions as supported by the
strong correlation with POC. The abundance of IP and BaP, as well as
high IP/(IP+BghiP) ratio (0.6) revealed that coal burning was the
dominant contributor to PM2.5 PAHs. Moreover, a relatively strong
positive relationship between babs,methanol and BaP (r=0.67) indicated
the important contribution of coal burning to BrC.

Source apportionment based on the PMF model results showed re-
sidential coal combustion contributed significantly to the detected

PM2.5 mass (36.9%), followed by industrial coal combustion (21.8%),
secondary formation (19.3%), traffic-related emissions (11.7%), and
fugitive dust (10.3%). The results from multivariate linear regression
highlight that residential coal combustion was the largest contributor to
babs365,methanol (37.4%), followed by secondary formation (6.7%) and
industrial coal combustion (3.5%). Our study indicates that coal
burning is an important contributor to BrC emissions in Yulin. Finally,
evaluation of radiation forcing of BrC versus EC showed that the esti-
mated relative radiative forcing by methanol-soluble organic carbon
relative to elemental carbon was 36.9% at 300–400 nm over Yulin.
These results revealed that BrC emitted from coal combustion had less
influence on radiative forcing than biomass burning. It is important to
discuss further the seasonal variations of airborne BrC absorption and
sources as well as radiative forcing in future work.
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