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Abstract 11 

A Hybrid Environmental Receptor Model (HERM) that unifies the theory of effective-variance 12 

chemical mass balance (EV-CMB) and positive matrix factorization (PMF) models was 13 

developed to support the weight-of-evidence approach of air pollution source apportionment. 14 

The HERM software is capable of 1) conducting EV-CMB analysis for multiple samples in a 15 

single iteration; 2) calculating EV-CMB and PMF source contributions as well as middle 16 

grounds (hybrid mode) between the two using partial source information available for the study 17 

region; 3) reporting source contribution uncertainties and sample-/species-specific fitting 18 

performance measures; 4) interfacing with MS Excel
®

 for convenient data inputs/outputs and 19 

analysis. Initial testing with simulated and real-world PM2.5 (fine particulate air pollutants with 20 

aerodynamic diameter < 2.5 µm) datasets show that HERM reproduces EV-CMB results from 21 

existing software but with more tolerance to collinearity and better uncertainty estimates. It also 22 
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shows that partial source information helps reduce rotational ambiguity in PMF, thus producing 23 

more accurate partitioning between highly correlated sources. Moreover, source profiles 24 

generated from the hybrid mode can be more representative of the study region than those 25 

acquired from other studies or calculated by PMF with no source information. Strategies to use 26 

HERM for source apportionment are recommended in the paper.      27 

Keywords 28 

Receptor model, chemical mass balance, PMF, PM2.5 source apportionment 29 
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INTRODUCTION 31 

Receptor models have been widely used for source apportionment of particulate and gaseous 32 

air pollutants, allowing control efforts to be focused on sources that contribute most to the 33 

environmental and health effects.
1-5

 In principle the speciation of pollutants at a receptor site 34 

reflects the emissions of individual sources and their chemical compositions, also known as 35 

source profiles. The most general form of chemical mass balance (CMB) model that links source 36 

profiles to ambient chemical composition considers the atmospheric transport and 37 

transformation,
6-7

 thus: 38 

∑=
j

jkjkijijkik QDFTC ))((         (1) 39 

where  40 

Cjk : the measured concentration of a pollutant i at sample k  41 

Qjk: the total emission from source j corresponding to the sample k 42 

Djk: the fraction of emissions arriving at the receptor site due to atmospheric transport  43 

Fij : the source profile, i.e., fractional quantity of pollutant i in source j emission 44 

Tijk: describe how the source profiles evolve/transformation during the transport    45 

In an ideal situation where Fij are measured accurately and comprehensively for the region of 46 

interest and where atmospheric transformation is negligible (Tijk ~ 1) or can be simulated 47 

adequately, Eq. (1) is simplified to: 48 

∑
=

=
J

j

jkijik SFC
1

          (2) 49 

where J indicates the number of sources that impact the receptor site and the source contribution 50 

Sjk (equal to DjkQjk) can be quantified from measured Cik and Fij by non-weighted linear 51 
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regression, providing that number of species is more than the number of sources in the model.  52 

The effective variance (EV) regression
8
 takes into account uncertainties in both Cik and Fij 53 

resulting from either measurement or variability in source emissions. EV-CMB solves for Sjk (j = 54 

1 to J for sample k) that minimize the reduced chi-square: 55 

∑
∑=

=

=

+









∑−

−
=

I

i
J

j

jkFC

J

j
jkijik

k

S

SFC

JI
ijik

1

1

222

2

12 1

σσ
χ           (3) 56 

where 
ikCσ and 

ijFσ are uncertainties of the measured concentrations and profile abundances, 57 

respectively. I and J are the number of species and sources, respectively; I - J that precedes the 58 

summation accounts for the degree of freedom (DF) in the model. EV refers to the denominator in 59 

Eq. (3), thus: 60 

∑
=

+=
J

j

jkFCik SEV
ijik

1

222 σσ          (4) 61 

Watson et al.
8
 developed an iterative algorithm, later adopted by the EPA CMB software,

9-11
 to 62 

solve Eq. (3). This algorithm works on one sample at a time, starting with the solution of ordinary 63 

weighted linear regression (in that case 2

ikCikEV σ=  only) for initial Sjk, updating EV at each 64 

iteration based on new Sjk, and continuing until Sjk is converged. The final 2

kχ  suggests the 65 

goodness of fit. There is no non-negative constraint in the algorithm, though the EPA CMB 66 

software enables a “source elimination mode” that automatically removes sources with negative 67 

contribution and recalculates Sjk. In addition, convergence may not be achieved if highly collinear 68 

source profiles are included in the model. 69 

The development of Multi-Linear Engine (ME-2)
12

 offers an alternative to solve Eq. (3). ME-70 

2 uses an iterative conjugate gradient algorithm to approach a local and/or global minimum for 71 
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any defined multilinear problems such as CMB. It can handle multiple samples by expanding the 72 

definition of reduced chi-square in Eq. (3) to: 73 

∑∑
= =

=


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
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∑−

−
=

K
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JIK 1 1

2

12

)(

1
χ       (5) 74 

ME-2 solves Sjk for all sources (j = 1 to J) and all samples (k = 1 to K, where K is the number of 75 

samples) simultaneously. Note DF in the model increases to K(I - J). Theoretically Eq. (5) is 76 

equivalent to Eq. (3) since Sjk that minimize every 2

kχ  defined in Eq. (3) must also minimize the 77 

overall
 2χ  in Eq. (5). Nonnegativity constraints have been implemented in ME-2 and so source 78 

contributions can only be zero or above. As we will show, the conjugate gradient algorithm 79 

tolerates collinearity better than the conventional EV regression in EPA CMB software. It 80 

produces solutions even when EPA CMB fails to converge. 81 

Assuming no uncertainty associated with any Fij (i.e., 
ijFσ  = 0), Eq. (5) would be reduced to 82 

that implemented by the positive matrix factorization (PMF) model, thus: 83 
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PMF, a factor analysis model, gains popularity in the last two decades for PM and volatile organic 85 

compounds (VOCs) source apportionment.
13

 It is typically applied to CMB problems where 86 

appropriate source profiles are not available, let alone source profile uncertainties, due to the lack 87 

of source testing data and/or substantial atmospheric modification of primary emissions. The 88 

model seeks Fij and Sjk that minimize 2χ  
in Eq. (6) simultaneously. Since all Fij are unspecified, 89 

DF in the model is reduced by I×J from Eq. (5) to Eq. (6). PMF relies on variability in chemical 90 

composition across ambient samples and therefore work best for a large dataset (i.e., many Cik) 91 
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with highly variable source contributions. The popular EPA PMF 5.0 software employs ME-2 to 92 

solve Eq. (6).
14

 The main issue with PMF is the rotational ambiguity, i.e., Fij and Sjk matrixes can 93 

be rotated in opposite direction to yield new solutions. This often leads to non-unique solutions 94 

despite the nonnegativity constrains on both Fij and Sjk, and some of the solutions may not even be 95 

physically possible. Although PMF calculations do not involve source profiles explicitly, the 96 

resulting “factors” are often interpreted based on how they compare with known source 97 

profiles.
15-17       98 

 
Source apportionment by EV-CMB and PMF has been compared in recent studies

 
for 99 

rural
17-19

, urban
20,21

, and industrial
22-24 

environments. While they both quantify major source 100 

contributions, biases between the two are often attributed to CMB profiles being representative of 101 

“fresh” source emissions ignoring transformation or “aging” between the source and receptor. 102 

Although PMF factors better capture the aging process, they inevitably mix sources together. 103 

Moreover, EV-CMB more likely resolves minor sources
17,18,23

, and its performance is best with 104 

locally-measured source profiles
22,24

. One major shortage of these studies is the lack of using 105 

simulated datasets to evaluate the absolute accuracy of the models. On the other hand, Shi et al.
25

 106 

used simulated data to evaluate the EV-CMB performance under serious collinearity conditions.
  

107 

This paper describes the development and evaluation of a Hybrid Environmental Receptor 108 

Model (HERM), which is built upon the ME-2 solution to EV-CMB problems (Eq. [5]). HERM 109 

differs from the current CMB software (i.e., EPA CMB v8.2) in the ability to analyze one or 110 

multiple samples in a single iteration, inherent non-negativity constraints, and better tolerance to 111 

collinearity. Most important of all, HERM bridges EV-CMB to PMF by allowing the use of 112 

incomplete or partial source profiles. In many situations, the lack of high-quality source profile(s) 113 

for every known source hinders successful CMB source apportionment. A few studies attempted 114 
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to incorporate source information into PMF or ME-2 by constraining ratios of marker species in 115 

the factors.
26,27

 HERM can take all reliable source profile information while estimating unknown 116 

sources and/or missing species in the source profiles. This feature also helps characterize “aged” 117 

source profiles when they vary substantially from source testing results (i.e., the “fresh” source 118 

profiles). When no source profiles are used, HERM would return to the PMF configuration (Eq. 119 

[6]) to calculate factor profiles and contributions. Virtually the model is capable of reporting 120 

both EV-CMB and PMF source apportionment, as well as any middle ground between the two. 121 

The current Chinese Academy of Sciences (CAS) HERM software comes with a Microsoft 122 

Excel
®

 user interface to facilitate data input, output, and analysis. Simulated particulate matter 123 

(PM) data were generated to evaluate the HERM performance with different degrees of source 124 

information. Moreover, the model was applied to a real-world PM dataset previously analyzed by 125 

EV-CMB to offer additional insights into the receptor modeling process.  126 

 127 

TECHNICAL APPROACHES 128 

Algorithms 129 

The ME-2 Basic_2way (B2W) script was modified to accommodate HERM requirements. 130 

B2W solves the PMF problem assuming all Fij and Sjk are unknown and to be solved. The model 131 

inputs include ambient measurements Cik, uncertainty 
ikCσ , and the number of factors J. In 132 

addition to the CMB equation (Eq. [2]), B2W implements a normalization scheme that constrains 133 

the average source contribution, KS
K

k

jk /
1

∑
=

, to 1 for each factor j, thus limiting the number of 134 

possible solutions. The modifications to B2W include the following: 135 

• Select the non-robust mode to calculate 2χ , as robust mode automatically downweight 136 
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apparent outliers
12

 and so would not be consistent with EV-CMB calculations.
 
The HERM 137 

software allows easy switch between the robust and non-robust mode. 138 

• Read source profiles into the model, with the number of profiles no more than J. Lock Fij that 139 

correspond to the profiles (i.e., fix them to the initial values throughout iteration). Assign a 140 

priori (or random) values to non-locked F and all S elements to begin the first iteration.  141 

• Read profile uncertainties (
ijFσ ) into the model for calculating EV. Assume zero 

ijFσ  for any 142 

non-specified or non-locked Fij. 143 

• Remove the auxiliary equations that normalize the average of Sjk (over all samples) to unity, 144 

considering that Fij are locked. 145 

• Replace error 2

ikCσ  with EVik (Eq. [4]) and update it at every iteration of conjugate gradient 146 

calculation using Sjk from the previous iteration until the convergence is reached. Final values 147 

of Sjk is reported as source contribution estimates. 148 

In the case of conventional EV-CMB problem where each factor is assigned a full source 149 

profile (i.e., all Fij are locked), HERM reports 2

kχ  and 2χ  
as defined in Eqs. (3)-(5), along with 150 

source contribution Sjk. Uncertainty (i.e., standard deviation 
jkSσ ) of Sjk is then estimated by: 151 

2112 ))('( kjjkSjk FdEVF χσ ×= −−         (7) 152 

where F is the I×J profile matrix and dEVk is an I×I diagonal matrix with diagonal elements 153 

(dEVk)ii = EVik. Eq. (7) takes into account both the EV and goodness of fit,
28

 though EPA CMB 154 

ignores the latter ( 2

kχ )
10,11

 A larger 2

kχ  indicates worse fit and certainly larger uncertainty in the 155 

source contribution estimate. The sample-specific correlation of fitting ( 2

kr ) is also calculated:
11

 156 
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Higher 2

kr  and lower 2

kχ  
generally suggest the particular sample is fitted better by the model. In 158 

addition, HERM calculates species-specific 2

iχ  and 2

ir , where: 159 
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2

iχ  and 2

ir
 
help diagnosis of the results, e.g., identifying species that are not fitted as well (high 162 

2

iχ  and low 2

ir ) across all samples. They are not reported by the current EPA CMB software. 163 

If HERM needs to solve profiles that are not assigned a priori and/or some species that are 164 

missing in the profiles (i.e., the “hybrid” or PMF mode), EVik is generalized to: 165 

)( 2

1

222*

ikijik C

J

j

ijjkFCik SEV σβδσσ ∑
=

++=       (11) 166 

Here δij = 0 if source profile element Fij is specified and δij = 1 when Fij is unknown or missing in 167 

the profiles, thus setting 
ijFσ  to zero. β  is an adjustable factor with a default value of 1. The last 168 

term in Eq. (11) avoids the model to overweight unspecified profile species in the fitting process 169 

due to a zero uncertainty. Missing (unlocked) Fij also decrease DF in the model, and therefore 170 

definitions of 2χ , 2

kχ , and 2

iχ  should be modified accordingly. For the hybrid mode, 171 
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is used in the calculation, instead of Eq. (5) for the EV-CMB mode. Eq. (12) returns to Eq. (5) 173 

when all Fij are locked (δij = 0), and it becomes the PMF formulation when no profile information 174 

is used (
ijFσ  = 0, δij = 1); in that case, 175 

22*

1

1
χ

β
χ

J+
=          (13) 176 

where 2χ  
is that defined in Eq. (6). Other generalized formulas are listed in the supporting 177 

information Table S1. 178 

 179 

User Interface 180 

The current CAS HERM v1.8 software takes inputs in Microsoft Excel
®

 format. Each input 181 

file should contain 6 tabs: 1) speciated ambient measurements (Cik); 2) speciated measurement 182 

uncertainties (
ikCσ ); 3) source profiles (Fij); 4) source profile uncertainties (

ijFσ ); 5) source 183 

profile specifications (keys); and 6) other model parameters, all of which are organized in matrix 184 

form (see supporting information Figure S1 for an example). 
ikCσ is determined from the 185 

measurement precision (%) and minimal detection limit (MDL) of each species
29

, with examples 186 

shown in Table S2, while 
ijFσ also takes into account the standard deviation of the averaged 187 

abundances from multiple source testings
30,31

. Typically the first species in ambient 188 

measurements and in source profiles is the normalization (total) species, such as PM mass or total 189 

VOCs concentration. The software allows users to specify profile keys corresponding to specific 190 

Fij to be either “locked” (EV-CMB mode) or “non-locked” (hybrid/PMF mode). Species will be 191 
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fitted whether they are locked or not. To exclude a species from fitting, one can remove the 192 

species from the ambient measurements or assign it a relatively large uncertainty so it contributes 193 

little to 2χ . It should be noted that typically EV-CMB does not fit the total species, and instead 194 

compares it with that reconstructed from the solution to inform the model performance (e.g., 195 

“%mass” in EPA CMB v8.2, see Coulter
11

). Other parameters in CAS HERM include the number 196 

of species (I), samples (K), and sources (J, specified plus unspecified), as well as a seed for the 197 

random numbers and the number of repeated runs with different seeds.  198 

CAS HERM passes the input to ME-2, which starts iteration with initial profiles, if specified, 199 

or random values. Upon convergence, ME-2 passes the final source profiles and contributions to 200 

CAS HERM, along with 2χ  for each run. Further CAS HERM calculates sample-specific 2

kχ , 2

kr , 201 

and 
jkSσ , as well as species-specific 2

iχ  and 2

ir . A scatter plot of measured versus calculated 202 

concentrations for each species is presented, along with the breakdown of source contributions to 203 

that species. Due to the numerical nature of ME-2, repeated runs can yield different results, and 204 

the users can select to report one (e.g, with the lowest 2χ ) or multiple run results for further 205 

analysis. All CAS HERM outputs are also in MS Excel® format with different information 206 

displayed in different tabs. Input information is included in the output file to facilitate data 207 

management, comparison, and interpretation.  208 

The current CAS HERM does not contain error estimation tools such as bootstrapping (BS) or 209 

displacement of factor elements (DISP) that are implemented in the EPA PMF 5.0
14

 software. 210 

These tools aim at quantifying uncertainties in factor profiles resolved by PMF due partly to 211 

noises and rotational ambiguity and could help evaluate the robustness of model solutions, 212 

especially if HERM is required to address unknown and/or incomplete source profiles. They will 213 

be integrated into future versions. Meanwhile, repeated runs (typically 10-20, with random initial 214 
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values) in CAS HERM provide a clue for the model robustness and the solution with the lowest 215 

2χ  is used in the following discussions. 216 

 217 

Simulated and Ambient Test Datasets 218 

Simulated PM2.5 (fine PM with aerodynamic diameter < 2.5 µm) data were generated from 5 219 

real-world source profiles, including a secondary ammonium sulfate (AMSUL), a secondary 220 

ammonium nitrate (AMNIT), a biomass burning (BB), a motor vehicle exhaust (MV), and an 221 

urban dust (U-Dust) profiles, used in the Reno PM2.5 source apportionment study.
32

 Each profile 222 

consists of water-soluble ions (NO3
-
, SO4

=
, NH4

+
, Na

+
, K

+
), organic carbon (OC), elemental 223 

carbon (EC), and thermal/optical carbon fractions as quantified by the IMPROVE_A protocol,
33

 224 

elements (Al to Pb), levoglucosan, as well as selected polycyclic aromatic hydrocarbons (PAHs), 225 

hopanes, and alkanes, for a total of 44 species that are normalized to the PM2.5 mass (see 226 

supporting information Table S2). For each sample, source profiles were perturbed stochastically 227 

from the defined means (Fij) and standard deviations (
ijFσ ) of the 5 sources. They were then 228 

multiplied by pre-specified Sjk (0 – 10 µg/m
3
 of PM2.5 for AMNIT and BB, and 0 – 5 µg/m

3
 of 229 

PM2.5 for AMSUL, MV and U-Dust) to determine the speciated PM2.5 concentrations at the 230 

receptor site (Eq. [2]), which were finally perturbed to simulate “would-be” measured values, Cik, 231 

according to the defined measurement uncertainties (
ikCσ ). Therefore, the simulated Cik reflect 232 

both the source variability and measurement errors. 233 

Two sets of simulated data, each of which contained 50 samples, were developed to challenge 234 

the receptor models. The first set (Scenario A) assumed correlations between the AMNIT and BB 235 

contributions (r
2
 = 0.5) and between the MV and U-Dust contributions (r

2
 = 0.8), a real-world 236 

situation as found by Chen et al.
32

. There were no correlations (r
2
 < 0.1) between any other pairs 237 
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of sources. For the other set of data (Scenario B), AMNIT was replaced by a road dust source (R-238 

Dust) that had a varying degree of collinearity with U-Dust. The R-Dust source profile, i.e., Fi,R-239 

Dust, simulates U-Dust being contaminated by brake wear, thus: 240 

BrakeiDustUiDustRi FFF ,,, )1( ×−+×= −− αα       (14) 241 

where Fi,Brake is the source profile of brake wear
34 

with high iron (Fe) and manganese (Mn) 242 

contents, and α determines the degree of collinearity ranging from 0 (no collinearity) to 1 (full 243 

collinearity). It should be noted that collinearity also depends on Cik, the receptor data to be 244 

fitted.
35

 The R-Dust profile uncertainty, 
DustRiF −,

σ , was calculated following the rule of error 245 

propagation. No correlations were assumed for any pairs of source contributions in this scenario. 246 

Scenario B therefore was based on AMSUL, BB, MV, U-Dust, and a range of R-Dust, while the 247 

other principles for constructing ambient Cik remained the same as Scenario A.  248 

Ambient PM2.5 data acquired from the Bliss State Park (BSP), California, and previously 249 

analyzed for source apportionment
18

 served to further test the receptor models. BSP, located in 250 

the scenic Lake Tahoe Basin, is part of the Interagency Monitoring of PROtected Visual 251 

Environments (IMPROVE) network designed to track the long-term trends of visibility in U.S. 252 

national parks and wildlife reserves.
36,37 

The site is impacted by local sources, particularly wood 253 

burning in nearby communities and wildlands and traffic from tourists, as well as long-range 254 

transport of natural and anthropogenic pollutants. The IMPROVE network quantifies only 255 

inorganic species, including mass, NO3
-
, SO4

=
, H

+
, OC, EC, and 21 elements, on an every 3

rd
 day 256 

basis. Based on EPA PMF and EV-CMB models, Green et al.
18

 attributed PM2.5 during 2005–257 

2009 to 9 sources, i.e., AMSUL, AMNIT, wood burning with both high and low combustion 258 

efficiencies (BBh and BBl), motor vehicles (MV), two road dusts (RDust1 and RDust2), Asian 259 

dust (ADust), and miscellaneous coal combustion (Coal), with the wood burning emissions 260 
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dominating throughout the year. Source profiles used for EV-CMB (Table S3) differed 261 

appreciably from those resolved by PMF.
18

 Although these source apportionment results satisfied 262 

general receptor modeling guidelines,
38,39

 there was a discrepancy between the measured and 263 

EV-CMB-calculated PM2.5 mass. This discrepancy might result from some source profiles being 264 

unrepresentative. Particularly, the wood burning profiles that were acquired near the burns 265 

represented fresh smoke better than aged smoke that actually impacted the BSP site.
40

 266 

 267 

RESULTS  268 

Consistency of HERM with EPA CMB  269 

HERM and EPA CMB was first applied to the simulated “Scenario A” dataset using known 270 

source profiles (i.e., all profiles are “locked”). Both models calculated Sjk and 
jkSσ  for the 50 271 

samples based on EV-CMB, and they are compared with actual source contributions in Table 1. 272 

All 50 HERM and EPA CMB iterations converged and no sources were eliminated due to 273 

negative contribution. HERM reproduced the exact EPA CMB results with respect to source 274 

contribution Sjk (r
2
 = 1, with the same means for corresponding sources). The minor differences, 275 

much smaller than the calculated source contribution uncertainty 
jkSσ , are attributed to the 276 

numerical precision of calculations, resulting in residual-to-uncertainty ratios (R/U ratios, model-277 

versus-model) that are << 1 (Table 1). Source apportionment by HERM (or EPA CMB) captures 278 

the variations of actual source contributions well (r
2
 > 0.96) and on average deviates from the true 279 

breakdowns by <2%. R/U ratios calculated from the difference in actual and modeled Sjk as well 280 

as modeled 
jkSσ  for individual samples are distributed roughly around unity, suggesting a 281 

reasonable estimate of source contribution uncertainties. However, the median R/U ratio (actual-282 

versus-model) is 0.92 and 0.71 for HERM and EPA CMB, respectively, compared to the expected 283 
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value of 1 (see supporting information Figure S2). 284 

The eligible space dimension, i.e., the maximum number of sources that are estimable in the 285 

EV-CMB model, according to Henry
41

 and calculated by EPA CMB
11

 is always 5 (Table S4). 286 

Estimable sources have a contribution uncertainty <20% of PM2.5 concentration (a predefined 287 

threshold), and when all the sources are estimable, as in this case, it corroborates no collinearity 288 

among the source profiles. 289 

Table 2 shows the comparison for “Scenario B” with a varying degree of collinearity between 290 

U-Dust and R-Dust. For median-to-high collinearity, the eligible space dimension is reduced from 291 

5 to 4 (Table S4), confirming similarity between at least two source profiles in the model. U-Dust 292 

and R-Dust are classified as inestimable (collinear) sources as they have small projections (<0.95) 293 

within the eligible space.
41

 This means uncertainties associated with the U-Dust and R-Dust 294 

contributions would be above the threshold. 295 

HERM reproduced EPA CMB results in the cases of low and median collinearity, though for 296 

some samples (3 in the low collinearity and 26 in the median collinearity case) U-Dust or R-Dust 297 

was eliminated by EPA CMB due to negative contributions. HERM attributed zero contributions 298 

to all the sources eliminated by EPA CMB and provided uncertainty estimates. For the three non-299 

collinear sources, AMSUL, BB, and MV, both HERM and EPA CMB yielded expected source 300 

contributions. EPA CMB, however, appears to overestimate the source contribution uncertainty, 301 

as most of the actual-versus-model R/U ratios it reports are less than 0.5. HERM reports smaller, 302 

and more reasonable, uncertainties. Source apportionment between the two collinear sources, U-303 

Dust and R-Dust, are not as accurate, as r
2
 decreases to 0.7 – 0.9 and 0.2 – 0.3 in the low and 304 

median collinearity case, respectively, when compared with the actual source contributions (Table 305 

2). The discrepancy is also reflected in the relatively large source contribution uncertainties from 306 

Page 15 of 40

ACS Paragon Plus Environment

Environmental Science & Technology



16 

 

HERM. Even in the median collinearity case, the median R/U ratio (actual-versus-model) for the 307 

two collinear sources remains at 0.83 from HERM, much closer to 1 in comparison with 0.40 308 

from EPA CMB. 309 

When collinearity is even higher, HERM starts to report source contributions that deviate 310 

from those of EPA CMB, and EPA CMB starts to report non-convergence in which no source 311 

contribution would be determined (see the high collinearity case in Table 2). Both HERM and 312 

EPA CMB fail to partition contributions from collinear sources, though HERM continues to 313 

report source contributions and uncertainties for all the samples, yielding a median actual-versus-314 

model R/U ratio of 0.33 (or 0.24 for the two collinear sources). In practice, large uncertainties 315 

(i.e., 
jkSσ ) alert users the potential collinearity in the model. The R/U ratio distributions in this 316 

case show that EPA CMB overestimates source contribution uncertainties more than HERM for 317 

the 3 non-collinear sources but underestimates source contribution uncertainties severely for the 318 

two collinear sources causing most R/U ratios > 2.5.     319 

HERM was applied to 226 BSP samples acquired 2008-2009, using the same 9 source profiles 320 

combination as prior EPA CMB analysis (Table 3). This leads to an overall 2χ  of 1.8 ( 2

kχ : 0.46 – 321 

20; 2

kr : 0.43 – 0.98). The 9 sources explained 87% of measured PM2.5. EPA CMB reported 12 322 

non-convergent samples and eliminated a number of sources due to negative contributions. The 323 

eligible space dimension ranges from 6 to 9 (Table S4), and so collinearity does occur in some of 324 

the samples. Specifically, BBh and ADust have the most small projections in the eligible space, 325 

likely due to their collinearity with BBl and RDust2, respectively. 326 

Other than the non-convergent samples and a few exceptions (with R/U ratio > 0.5, model-327 

versus-model), HERM reproduced the EPA CMB source apportionment for the BSP dataset 328 

(Table 3). The exceptions for AMSUL, MV, and Coal are attributed to a single outlier 329 
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(5/16/2009), which also explains the low correlation (r
2
 = 0.43) between the HERM- and EPA 330 

CMB-calculated Coal combustion contributions. Removing the outlier improves r
2
 to 1.0 (see 331 

Figure S2). The 5/16/2009 sample features the highest calcium (Ca) concentration in the dataset 332 

that may introduce collinearity between the Coal and Asian dust source profiles, both of which 333 

contains an elevated Ca fraction (6.5% for Coal and 4.0% for Asian dust). In fact, collinearity 334 

resulted in one of the three dust sources being eliminated by EPA CMB for many samples. 335 

HERM avoided non-convergence and reported source contributions for every sample. It also 336 

shows relatively large uncertainties associated with the road dust contributions (Figure S4). 337 

A scatter plot of 2

iχ  
versus 2

ir  is used to evaluate HERM’s fitting performance (Figure 1). 338 

Most of the species in the simulated Scenario A dataset are fitted well with 2

ir
 
> 0.95 taking into 339 

account the effective variance (Eq. [10]). Exceptions include 10 elements and 2 organic markers 340 

(Figure 1a). However, none of the species show 2

iχ  > 1, suggesting that they contribute little to 341 

the overall 2χ  due to relatively large uncertainty (i.e., low signal-to-noise ratio) of the species in 342 

the source profiles, ambient measurements, or both. In the case of real-world BSP dataset, 343 

however, a few species that are not fitted well by the current HERM 9-source model, such as Zn, 344 

Ni, Pb and Br show 2

ir
 
< 0.8 and 2

iχ  >> 1 (Figure 1b). There are therefore “real” discrepancies 345 

between the measured and modeled concentrations. This alerts users that different source profiles 346 

and/or additional sources may be needed in the model to explain variations of these species.    347 

 348 

Application of HERM for unknown sources 349 

In real-world applications, representative source profiles may not be available for all the 350 

sources that contribute to ambient PM2.5, and HERM is better run in the hybrid mode. For our 351 
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Scenario A, AMSUL and AMNIT are hypothetical profiles for secondary ammonium salts 352 

formed in the atmosphere and U-Dust can be acquired for regions of interest at a relatively low 353 

cost through resuspension.
30,42

 On the other hand, MV and BB source profiles likely result from 354 

other studies and deviate from the actual emissions that impact the receptor site. It is logical to 355 

specify only AMSUL, AMNIT, and U-Dust in the source apportionment by HERM, and let the 356 

model calculate other source profiles. The first trials include the three specified source profiles 357 

(and their uncertainties) as well as 0 to 4 unspecified source profiles, for a total of 3 – 7 sources 358 

in the HERM analysis. Figure 2 shows that 2χ  decreases substantially from 3 to 5 sources and 359 

levels off thereafter. This indicates that 5 sources sufficiently explain the variability in the 360 

dataset, as expected. In practice, such tests alerts users to focus on a 5-source model. 361 

Four different conditions were examined under a 5-source model: 1) 3 sources specified 362 

(AMSUL, AMNIT, and U-Dust); 2) 4 sources specified (AMSUL, AMNIT, MV, and U-Dust); 363 

3) no sources specified; and 4) no sources specified by EPA PMF 5.0 (Table 4). HERM was used 364 

for the first 3 conditions. When missing only the BB profile, HERM was able to report source 365 

contribution estimates as accurate as HERM or EPA CMB using all 5 source profiles (r
2
 > 0.97, 366 

with 2χ  of 0.12 and a median actual-versus-model R/U ratio of 1.1). When the MV profile was 367 

also removed, the model still predicted BB well but underestimated the U-Dust contribution 368 

significantly (r
2
 = 0.54). The R/U ratios, particularly for U-Dust, increased substantially leading 369 

to a median value of 2.2 (9.2 for U-Dust). Therefore, the discrepancy, resulted from the strong 370 

correlation between the MV and U-Dust contributions, is not captured in the source contribution 371 

uncertainty estimates. A few crustal elements (e.g., Al, Si, Ca, and Fe) are mixed into the 372 

calculated MV source profile (Figure S5); this confirms the challenge for receptor model to 373 

separate correlated sources without specific source profiles. 374 
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The two conditions without any source profile inputs generally failed to yield accurate source 375 

contribution estimates (Table 4). EPA PMF underestimated BB and U-Dust contributions while 376 

overestimating the others for which the actual and modeled source contributions remain highly 377 

correlated (r
2
 > 0.93). The HERM source apportionment differ from that of EPA PMF, likely due 378 

to different ME-2 settings (e.g., nonrobust versus robust). Other causes of the difference are 379 

explained in Kim and Hopke
43

. All corresponding source contributions between the two models 380 

show strong correlations (r
2
 > 0.91), and the median model-versus-model R/U ratio is 2.0, lower 381 

than their median actual-versus-model R/U ratios (HERM: 6.6; EPA PMF: 6.0). Generally, they 382 

agree with each other better than with the actual source contributions.          383 

 384 

Improvement of source apportionment with HERM 385 

Source apportionment results can usually be improved with additional information that serve 386 

as constraints to a receptor model. Even if the full source profile is unavailable, it is possible to 387 

introduce to the prior knowledge that MV (tailpipe) emissions contain little crustal elements, 388 

such as silicon (Si) and Ca, into the HERM modeling. This was done by specifying an 389 

incomplete source profile with only two zero elements (Si and Ca), along with three full source 390 

profiles (AMSUL, AMNIT, and U-Dust), in the HERM input file to establish a 5-source model 391 

for the Scenario A dataset (Table 5). The resulting MV and U-Dust contributions agree with 392 

actual values better (r
2
 > 0.98) than those acquired previously using only the three full source 393 

profiles. The median actual-versus-model R/U ratio drops from 2.2 to 1.3 while the overall 2χ  394 

increases little from 0.093 to 0.12. HERM also closely reproduces the expected MV source 395 

profile (Figure S5). This example illustrates how additional source information help separate 396 

correlated sources. 397 
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In the previous BSP PM2.5 source apportionment, the road and Asian dust source profiles 398 

were developed locally
18

 and, along with AMSUL and AMNIT, can be representative of 399 

corresponding sources or atmospheric processes. The MV profile that is a composite from 400 

dynamometer testing
44

 should represent tailpipe emissions of a modern fleet (low-emitting 401 

gasoline vehicles). On the other hand, the BB and Coal profiles are more uncertain. Wildfire 402 

smoke impacts BSP from time to time, for which source profile may substantially differ from 403 

BBh and BBl acquired from a much smaller scale laboratory combustion.
45

 Since there are not 404 

industrial sources in the Lake Tahoe Basin, the “Coal” contributions must originate from long-405 

range transport and chemically resemble mixed industrial emissions. Figure 3 shows the 406 

dependence of 2χ  on the number of sources when the first 4 sources (AMSUL, AMNIT, 407 

RDust2, ADust) are specified in HERM. Though it is not as obvious as Figure 2, the trend 408 

suggests 6 or 7 sources to be the most appropriate. Thus the three least contributing sources in 409 

Table 3, i.e., BBh, RDust1, and/or Coal, may be merged with other sources.              410 

The 6- and 7-source models were constructed by HERM (Table 6), and these models all 411 

appeared robust as 2χ  
varied little in repeated runs. Based on correlations with the prior model 412 

results, the two additional sources in the 6-source model were identified as BB (r
2
 = 0.97) and 413 

MV (r
2
 = 080). However, industrial markers such as As, Br, Pb, Se, Zn, and S show higher than 414 

expected fractions in the derived “MV” profile, suggesting its coupling with mixed industrial 415 

emissions (noted by “MV + Ind.” in Table 6). A 7-source model with 3 unspecified sources 416 

could not separate them, possibly due to some correlation and/or collinearity between the two. 417 

When adding the default MV profile in the model input (i.e., 5 specified plus 2 unspecified 418 

sources), however, HERM was able to separate motor vehicle and industrial contributions. Table 419 

6 compares source apportionment by the HERM 6-source (4+2), HERM 7-source (5+2), and EV-420 
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CMB 9-source (from Table 3) models. For the 4 pre-specified sources and calculated BB, the 421 

HERM 6- and 7-source models estimate essentially the same contributions considering the 422 

reported uncertainty (median R/U ratio < 0.2). With the input of MV source profile, the 7-source 423 

model distinguishes the MV contribution while achieving a better fit (i.e., lower 2χ ). Unlike 424 

EV-CMB which underestimates PM2.5 mass, both HERM models explain PM2.5 mass within 2% 425 

by allowing part of the profiles to vary. The hybrid models attribute more mass to BB and 426 

transported industrial emissions but less mass to AMSUL and MV. Particularly, MV fraction in 427 

PM2.5 is >11% by EV-CMB and only 2% by the HERM hybrid 7-source model. A concurrent 428 

emission inventory
46

 supports the latter as basinwide onroad vehicles and recreational boats 429 

account for <2% the primary PM2.5 emission. Unrepresentative biomass burning and industrial 430 

source profiles may have caused EV-CMB to overestimate the MV contribution. 431 

  The derived BB source profile is similar to BBl where OC, EC, and K dominate (Figure S6) 432 

but with higher EC/OC (0.12 vs. 0.047) and lower K/OC ratios (0.011 versus 0.014). Sulfur is 433 

the most enriched species in both the derived industrial and Coal source profiles (Figure S6), 434 

though the Se/S ratio differs significantly between the two (0.00052 vs. 0.016). A low ratio 435 

typically means substantial aging, and one should note that the ambient Se/S ratio never 436 

exceeded 0.001 and averaged only 0.00014 over the entire period. Moreover, industrial elements 437 

including Br, Zn, and Pb are more enriched in the derived industrial than in the measured Coal 438 

source profile; this results in them being fitted better (higher 2

ir
 
and lower 2

iχ ) by the hybrid 7-439 

source model (Figure 4) than by EV-CMB with 9 sources (Figure 1), at a small cost to the K and 440 

Se fittings. The fitting for Ni and EC also improves. In general, the hybrid model explains well 441 

the variations of species in the BSP dataset. 442 

    443 
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DISCUSSION AND RECOMMENDATION 444 

Receptor model is an important tool for air quality management. Since none of the 445 

modeling approaches is without biases or uncertainties, a weight-of-evidence (WOE) approach 446 

that takes into account multiple model results is strongly recommended in practice.
19,23,24,39

 This 447 

paper introduces the hybrid environmental receptor model (HERM) that can perform EV-CMB 448 

and PMF, two most popular receptor models for PM2.5 source apportionment, using a unified 449 

algorithm and evaluates it with simulated and real-world datasets. In the EV-CMB mode, where 450 

all source profiles/uncertainties are specified, HERM is shown to yield source attributions nearly 451 

identical to EPA CMB v8.2 but with 1) more tolerance to collinearity and 2) better estimate of 452 

source contribution uncertainty even when collinearity occurs. In the PMF mode where no 453 

source information is used, HERM and EPA PMF 5.0 source contributions are highly correlated 454 

but not the same due to different modeling preferences (e.g., non-robust versus robust).  455 

HERM allows a hybrid mode that takes partial source information such as incomplete 456 

source profiles to pursue a middle ground between EV-CMB and PMF. This is particularly 457 

useful since the inclusion of only reliable source profiles in the model avoids poor fitting in EV-458 

CMB while reducing the rotational degree of freedom in PMF analysis. HERM implements the 459 

constraints differently from EPA PMF in that it uses source profile uncertainties explicitly in the 460 

effective variance fitting. Preliminary tests show that partial information improves source 461 

apportionment. It could help separate sources of which contributions are highly correlated thus 462 

presenting a major challenge to PMF. It also calculates source profiles that are more 463 

representative of the study region than profiles acquired from somewhere else.  464 

More tests are warranted to determine how the best performance of HERM may be 465 

achieved with different datasets and also how the robust mode, if implemented, will alter the 466 
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source apportionment in the EV-CMB or hybrid mode. The convenience of the model’s user 467 

interface will facilitate the investigation, as it allows all input and output parameters in a single 468 

MS Excel® file for easier data processing and comparison. In addition to source contribution and 469 

uncertainty values, HERM calculates reduced chi
2
 ( 2χ ) to inform users the overall goodness of 470 

fit, 2

kχ  
and 2

kr  to assess sample-specific fits, and 2

iχ  
and 2

ir  to assess species-specific fits. This 471 

helps identify outliers for potential removal from the model. When practicing receptor modeling, 472 

users are recommended to first determine the possible number(s) of sources (J) by examining the 473 

dependence of 2χ  
on J. HERM in different modes (EV-CMB, hybrid, and PMF) using non-474 

robust and robust calculations should be carried out with their results compared and reconciled to 475 

support the WOE approach of source apportionment. 476 
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(a) 

 

(b) 

Figure 1. HERM fitting performance examined by species-specific residual ( 2

iχ ) and correlation 649 

coefficient ( 2

ir ) for the (a) simulated Scenario A (b) BSP dataset (EV-CMB mode, see Table 1 650 

and 3). Species noted in blue show relatively extreme 2

iχ  and/or 2

ir .  651 
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 653 

Figure 2. HERM fitting performance for the Scenario A dataset examined by the overall residual 654 

( 2χ ) as a function of the total number of sources and number of sources specified in the model. 655 

AMSUL, AMNIT, and U-Dust are among the 3 sources specified. Additionally, MV is included 656 

in the “4 or 5 sources specified” and BB is included in the “5 sources specified”.   657 
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 659 

Figure 3. HERM fitting performance for the BSP (2008-2009) dataset examined by the overall 660 

residual ( 2χ ) as a function of the total number of sources when 4 sources, AMSUL, AMNIT, 661 

RDust2, and ADust, have been specified. 662 
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 664 

Figure 4. HERM fitting performance examined by species-specific residual ( 2

iχ ) and correlation 665 

coefficient ( 2

ir ) for the BSP 2008-2009 dataset (hybrid 7-source model, see Table 6). Species 666 

noted in blue show relatively extreme 2

iχ  and/or 2

ir . 667 
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Table 1. Source apportionment of simulated PM2.5 speciation dataset (Scenario A) by CAS HERM and EPA CMB, compared with the 668 

actual source contributions. 669 

 Samples Mean Contribution
*
  

(µg m
-3

) 

Correlation (r
2
) R/U Ratio

†
 (<0.5/0.5-1.5/1.5-2.5/>2.5) Source 

Eliminated
‡
 

Noncon-

vergence
@

 

Source(s) # Actual 

(x) 

HERM 

(y) 

CMB 

(z) 

x vs y x vs z y vs z x vs y x vs z y vs z HERM CMB HERM CMB 

AMSUL 50 2.591 2.599 2.599 0.983 0.983 1.000 19 21 7 3 24 20 4 2 50 0 0 0 0 0 0 0 

AMNIT 50 4.817 4.757 4.757 0.988 0.988 1.000 12 20 11 7 19 23 7 1 50 0 0 0 0 0 0 0 

BB 50 4.866 4.777 4.777 0.963 0.963 1.000 17 19 12 2 16 16 10 8 50 0 0 0 0 0 0 0 

MV 50 2.423 2.459 2.460 0.979 0.980 1.000 23 22 4 1 17 18 6 9 50 0 0 0 0 0 0 0 

U-Dust 50 2.330 2.313 2.314 0.983 0.983 1.000 12 17 11 10 21 25 3 1 50 0 0 0 0 0 0 0 
                        

Sum  17.026 16.906 16.906 HERM: x
2
 = 0.182 

*
Actual source contribution (Sjk) and those derived by HERM and EPA CMB models are noted as x, y, and z, respectively. Mean values take into 670 

account all available data. 671 
†
Residue-Uncertainty (R/U) ratio of x and y is calculated by |y-x|/σy where σy is the source contribution uncertainty estimated by HERM. The 672 

ratios are then categorized into 4 ranges: <0.5, 0.5-1.5, 1.5-2.5, and >2.5 with numbers in each range shown in the table. Similarly, R/U ratio of x 673 

and z is calculated by |z-x|/σz where σz is the source contribution uncertainty estimated by EPA CMB. R/U ratio of y and z is calculated by |y-674 

z|/(σy
2
 + σz

2
)

½
. 675 

‡
Number of source eliminated due to negative source contribution. When occurring, no uncertainty estimate is provided by EPA CMB. 676 

⁑
Number of non-convergence due to collinearity. When occurring, no uncertainty estimate is provided by HERM or EPA CMB. 677 
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Table 2. Source apportionment of simulated PM2.5 speciation dataset (Scenario B) by CAS HERM and EPA CMB, compared with the 679 

actual source contributions. 680 

 Samples Mean Contribution
*
  

(µg m
-3

) 

Correlation (r
2
) R/U Ratio

†
 (<0.5/0.5-1.5/1.5-2.5/>2.5) Source 

Eliminated
‡
 

Noncon-

vergence
@

 

Source(s) # Actual 

(x) 

HERM 

(y) 

CMB 

(z) 

x vs y x vs z y vs z x vs y x vs z y vs z HERM CMB HERM CMB 

Low collinearity between U-Dust and R-Dust (α = 0.9)  

AMSUL 50 2.404 2.418 2.418 0.992 0.992 1.000 24 19 7 0 44 6 0 0 50 0 0 0 0 0 0 0 

BB 50 4.758 4.831 4.831 0.985 0.985 1.000 26 21 3 0 45 5 0 0 50 0 0 0 0 0 0 0 

MV 50 4.899 4.887 4.887 0.993 0.993 1.000 25 19 6 0 44 6 0 0 50 0 0 0 0 0 0 0 

U-Dust 50 2.479 2.256 2.257 0.738 0.738 1.000 8 14 15 13 19 26 2 0 47 0 0 0 0 3 0 0 

R-Dust 50 2.488 2.597 2.597 0.892 0.892 1.000 11 18 12 9 26 21 2 1 50 0 0 0 0 0 0 0 
                        

Sum  17.029 16.990 16.990 HERM: x
2
 = 0.151 

Median collinearity between U-Dust and R-Dust (α = 0.99) 

AMSUL 50 2.404 2.418 2.418 0.990 0.990 1.000 16 25 9 0 42 8 0 0 50 0 0 0 0 0 0 0 

BB 50 4.758 4.900 4.900 0.979 0.979 1.000 19 27 4 0 48 1 1 0 50 0 0 0 0 0 0 0 

MV 50 4.899 4.820 4.820 0.989 0.989 1.000 26 18 6 0 45 4 1 0 50 0 0 0 0 0 0 0 

U-Dust 50 2.479 2.589 2.588 0.179 0.179 1.000 15 26 8 1 22 4 4 8 38 0 0 0 0 12 0 0 

R-Dust 50 2.488 2.337 2.338 0.276 0.277 1.000 13 28 8 1 23 3 1 9 36 0 0 0 0 14 0 0 
                        

Sum  17.029 17.063 17.063 HERM: x
2
 = 0.171 

High collinearity between U-Dust and R-Dust (α = 0.998) 

AMSUL 50 2.404 2.401 2.444 0.985 0.985 1.000 24 18 5 3 39 9 1 0 49 0 0 0 0 0 0 1 

BB 50 4.758 4.769 4.699 0.987 0.987 1.000 26 21 3 0 45 4 0 0 49 0 0 0 0 0 0 1 

MV 50 4.899 4.896 4.864 0.996 0.996 1.000 30 18 2 0 46 3 0 0 49 0 0 0 0 0 0 1 

U-Dust 50 2.479 1.739 1.656 0.029 0.017 0.997 47 3 0 0 7 1 2 10 20 0 0 0 0 29 0 1 

R-Dust 50 2.488 3.165 3.208 0.051 0.055 0.997 48 2 0 0 8 3 1 24 36 0 0 0 0 13 0 1 
                        

Sum  17.029 16.970 16.871 HERM: x
2
 = 0.158 

*†‡⁑
See footnotes in Table 1. 681 
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Table 3. Source apportionment of ambient PM2.5 speciation dataset (BSP 2008-2009) by CAS HERM and EPA CMB. 683 

 Samples Mean Contribution
*
 (µg m

-3
) Correlation 

(r
2
) 

R/U Ratio
†
  

(<0.5/0.5-1.5/1.5-2.5/>2.5) 

Source 

Eliminated
‡
 

Noncon-

vergence
@

 

Source(s) # Actual HERM (y) CMB (z) y vs z y vs z HERM CMB HERM CMB 

AMSUL 226  0.555 0.553 1.000 213 1 0 0 0 0 0 12 

AMNIT 226  0.161 0.158 1.000 210 0 0 0 0 4 0 12 

RDust1 226  0.005 0.005 0.998 109 0 0 0 0 105 0 12 

RDust2 226  0.123 0.122 0.991 134 3 0 0 0 77 0 12 

ADust 226  0.506 0.514 0.999 195 0 0 0 0 19 0 12 

BBh 226  0.105 0.107 1.000 174 0 0 0 0 40 0 12 

BBl 226  1.358 1.363 1.000 188 0 0 0 0 26 0 12 

MV 226  0.419 0.422 0.996 212 1 0 0 0 1 0 12 

Coal 226  0.029 0.025 0.427 195 1 0 0 0 18 0 12 
              

Sum  3.760 3.261 3.269 HERM: x
2
 = 1.81 

*
Source contribution (Sjk) derived by HERM and EPA CMB models are noted as y and z, respectively. Mean values take into account all available 684 

data. The 9 sources include ammonium sulfate (AMSUL), ammonium nitrate (AMNIT), two road dusts (RDust1, RDust2), Asian dust (ADust), 685 

wood burning with both low and high combustion efficiencies (BBh and BBl), traffic (MV), and miscellaneous coal combustion (Coal). 686 
†
Residue-Uncertainty (R/U) ratio of y and z is calculated by |y-z|/(σy

2
 + σz

2
)

½
, where σy and σz is the source contribution uncertainty estimated by 687 

HERM and EPA CMB, respectively. The ratios are then categorized into 4 ranges: <0.5, 0.5-1.5, 1.5-2.5, and >2.5 with numbers in each range 688 

shown in the table. 689 
‡
Number of source eliminated due to negative source contribution. When occurring, no uncertainty estimate is provided by EPA CMB. 690 

⁑
Number of non-convergence due to collinearity. When occurring, no uncertainty estimate is provided by HERM or EPA CMB. 691 

  692 

Page 36 of 40

ACS Paragon Plus Environment

Environmental Science & Technology



37 

 

Table 4. Source apportionment of simulated PM2.5 speciation dataset (Scenario A) by CAS HERM and EPA PMF 5.0, compared with 693 

the actual source contributions. 694 

 Samples Mean Contribution
*
  

(µg m
-3

) 

Correlation (r
2
) R/U Ratio

†
 (<0.5/0.5-1.5/1.5-2.5/>2.5) Noncon-vergence⁑⁑⁑⁑ 

Source(s) # Actual 

(x) 

HERM
4+1 

(y) 

HERM
3+2

 

(z) 

x vs y x vs z y vs z x vs y x vs z y vs z HERM
4+1

 HERM
3+2

 

AMSUL 50 2.591 2.610 2.808 0.982 0.975 0.993 19 22 7 2 5 14 9 22 10 23 14 3 0 0 

AMNIT 50 4.817 4.748 4.828 0.986 0.986 1.000 13 24 10 3 5 18 17 10 33 11 4 2 0 0 

BB 50 4.866 4.750 4.701 0.987 0.994 0.992 20 15 6 9 19 25 5 1 33 17 0 0 0 0 

MV 50 2.423 2.513 3.393 0.977 0.996 0.968 8 17 10 15 3 4 12 31 4 8 10 28 0 0 

U-Dust 50 2.330 2.213 1.124 0.982 0.543 0.552 11 24 10 5 0 0 2 48 3 2 6 39 0 0 
                      

Sum  17.026 16.834 16.854 HERM
4+1

: x
2
 = 0.121; HERM

3+2
: x

2
 = 0.093 

 

Source(s) # Actual 

(x) 

HERM
0+5 

(y) 

PMF 

(z) 

x vs y x vs z y vs z x vs y x vs z y vs z HERM
0+5

 PMF 

AMSUL 50 2.591 2.474 3.368 0.976 0.937 0.976 10 18 7 15 2 3 5 40 1 2 6 41 0 0 

AMNIT 50 4.817 6.765 5.989 0.976 0.955 0.973 4 5 2 39 3 3 4 40 7 16 4 23 0 0 

BB 50 4.866 2.366 2.705 0.570 0.557 0.981 1 1 3 45 3 3 4 40 10 19 15 6 0 0 

MV 50 2.423 3.963 3.186 0.995 0.958 0.962 4 5 3 38 3 4 2 41 7 10 5 28 0 0 

U-Dust 50 2.330 1.310 1.594 0.098 0.207 0.915 0 4 2 44 0 6 6 38 13 13 15 9 0 0 
                      

Sum  17.026 16.878 16.842 HERM
0+5

: χ
2
 = 0.152; PMF: x

2
 = 0.161 

*
Actual source contribution (Sjk) and those derived by HERM or EPA PMF models are noted as x, y, or z, respectively. Mean values take into 695 

account all available data. HERM
4+1 

specifies 4 source profiles (AMSUL, AMNIT, MV, and U-Dust) while calculating 1 source profile (BB). 696 

HERM
3+2 

specifies 3 source profiles (AMSUL, AMNIT, and U-Dust) while calculating 2 source profiles (BB and MV). HERM
0+5 

and PMF 697 

calculate all 5 profiles (non-specified). Calculated source profiles are matched to the known sources by ranking the correlation coefficients across 698 

source contributions.    699 
†⁑See footnotes in Table 1. 700 
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Table 5. Source apportionment of simulated PM2.5 speciation dataset (Scenario A) by CAS HERM, compared with the actual source 702 

contributions. 703 

 Samples Mean Contribution
* 

(µg m
-3

) 

Correlation 

(r
2
) 

R/U Ratio
†
 

(<0.5/0.5-1.5/1.5-2.5/>2.5) 

Source(s) # Actual 

(x) 

HERM
3+2’

 

(y) 

x vs y x vs y 

AMSUL 50 2.591 2.806 0.975 5 14 10 21 

AMNIT 50 4.817 4.825 0.986 8 20 13 9 

BB 50 4.866 4.460 0.989 7 25 12 6 

MV 50 2.423 2.294 0.996 16 33 1 0 

U-Dust 50 2.330 2.470 0.987 7 9 14 20 
         

Sum  17.026 16.855 HERM
3+2’

: x
2
 = 0.124 

*
Actual source contribution (Sjk) and those derived by HERM are noted as x and y, respectively. Mean values take into account all available data. 704 

HERM
3+2’ 

specifies 3 source profiles (AMSUL, AMNIT, and U-Dust) while also specifying the silicon (Si) and calcium (Ca) contents in one of the 705 

two unknown source profiles to be zero. Other profile elements are calculated by the model. Derived source profiles are matched to BB or MV 706 

according to correlation coefficients across source contributions.    707 
†
See footnotes in Table 1. 708 
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Table 6. Source apportionment of ambient PM2.5 speciation dataset (BSP 2008-2009) by CAS HERM models. 710 

Samples Mean Source Contribution
*
 (µg m

-3
) Correlation (r

2
) R/U Ratio

†
  

(<0.5/0.5-1.5/1.5-2.5/>2.5) 

# EV-CMB Sources 

(x) 

HERM
4+2

 Sources 

(y) 

HERM
5+2

 Sources 

(z) 

x vs y x vs z y vs z x vs y x vs z y vs z 

226 AMSUL 0.555 AMSUL 0.488 AMSUL 0.481 0.986 0.987 0.999 56 160 10 0 27 98 58 43 221 5 0 0 

226 AMNIT 0.161 AMNIT 0.174 AMNIT 0.172 0.991 0.992 1.000 204 22 0 0 177 49 0 0 226 0 0 0 

226 RDust1 0.005                    

226 RDust2 0.123 RDust2 0.096 RDust2 0.092 0.254 0.435 0.844 158 62 6 0 121 86 19 0 219 7 0 0 

226 ADust 0.506 ADust 0.515 ADust 0.510 0.966 0.973 0.995 169 54 3 0 123 88 14 1 218 8 0 0 

226 BBh 0.105                    

226 BBl 1.358 BB
~
 2.217 BB

~
 2.256 0.966 0.972 0.999 38 85 79 24 11 34 39 142 204 22 0 0 

226 MV 0.419 MV + Ind.
~
 0.204 Ind.

~
 0.124 0.803 0.759 0.936 11 146 62 7 0 1 3 222 7 40 67 112 

226 Coal 0.029   MV 0.076  0.017      88 107 27 4     
    

 

 

 

               

 
Sum 3.261  3.694  3.712 χ

2
 = 1.81 (EV-CMB), 1.53 (HERM

4+2
), and 1.23 (HERM

5+2
) 

*
Source contribution (Sjk) derived by three HERM models are noted as x, y and z, respectively. EV-CMB is accomplished by HERM using 9 full 711 

source profiles (same as Table 3), HERM
4+2 

specifies 4 source profiles while calculating 2 source profiles, and HERM
5+2 

specifies 5 source profiles 712 

while calculating 2 source profiles. The last two use the HERM hybrid mode. Mean values take into account all available data.  713 
~
Source (profiles) calculated by HERM. “Ind.” stands for mixed industrial emissions. 714 

†
Residue-Uncertainty (R/U) ratio of x and y is calculated by |y-x|/(σx

2
 + σy

2
)

½
 where σx and σy are the source contribution uncertainty estimated by 715 

HERM. The ratios are then categorized into 4 ranges: <0.5, 0.5-1.5, 1.5-2.5, and >2.5 with numbers in each range shown in the table. Similarly, 716 

R/U ratio of x and z is calculated by |z-x|/(σx
2
 + σz

2
)

½
 and R/U ratio of y and z is calculated by |y-z|/(σy

2
 + σz

2
)

½
. 717 
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