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Abstract Airborne carbonyls were characterized from emit-
ted indoor coal combustion. Samples were collected in
Xuanwei (Yunnan Province), a region in China with a high
rate of lung cancer. Eleven of 19 types of samples (58%)
demonstrated formaldehyde concentrations higher than the
World Health Organization exposure limit (a 30-min average
of 100 μg m−3). Different positive significant correlations be-
tween glyoxal/methylglyoxal and formaldehyde/acetaldehyde

concentrations were observed, suggesting possible different
characteristics in emissions between two pairs of carbonyl
compounds. A sample in the highest inhalation risk shows
29.2 times higher risk than the lowest sample, suggesting dif-
ferent coal sampling locations could contribute to the variation
of inhalation risk. Inhabitants in Xuanwei also tend to spend
more time cooking and more days per year indoors than the
national average. The calculated cancer risk ranged from 2.2–

Highlights
•Over 50% of samples produce higher formaldehyde concentrations than
the exposure limit
• Positive significant correlations show different emission characteristics
• A sample with the highest inhalation risk is 29.2 times higher than the
lowest sample

• Over 60% of samples indicate cooking risks at a high level
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63 × 10−5, which shows 13 types of samples at high-risk level.
Cumulative effect in combination with different carbonyls
could have contributed to the additive actual inhalation cancer
risk. There is a need to explicitly address the health effects of
environmentally relevant doses, considering life-long expo-
sure in indoor dwellings.

Keywords Carbonyl . Indoor air . Coal . Cancer risk

Introduction

Coal is a major energy source. Coal combustion accounts for
∼25% energy consumption worldwide (Zhang et al. 2008),
and China has become the largest consumer of coal in the
world (World energy outlook 2012; Lin and Ouyang 2014).
China is also a large energy consumer, and over 75% of its
electricity supply comes from coal combustion (Liu et al.
2008). The country is facing severe carbonaceous aerosol pol-
lution and suffering from frequent haze events as a result of
deteriorated environmental quality (Tao et al. 2016; Tie and
Cao 2009).

Xuanwei County is located in the Yunnan Province of
China with a population approximately 1.2 million living in
an area of 6257 km2. The county is one of the major coal-
producing regions in Yunnan and renowned for an exception-
ally high lung cancer rate (i.e., 2004–2005 lung cancer mor-
tality rate: Xuanwei, 91 per 100,000; national average; 31 per
100,000) (Lin et al. 2015). Past studies linked lung cancer
mortality with coal combustion emissions in the area
(Barone-Adesi et al. 2012; Kim et al. 2014; Mumford et al.
1987, 1993). The organic extracts of smoky coal samples reg-
ularly used in the area were proven to be mutagens, and these
samples were shown to be a mouse skin carcinogen and potent
initiator of skin tumors (Mumford et al. 1989, 1990). The
relevant coal burning studies usually concentrated on charac-
terizing polycyclic aromatic hydrocarbons (PAHs), mineral-
ogical compositions, household fire pit for the emissions,
etc. (Chuang et al. 1992; Dai et al. 2008; Mumford et al.
1995; Tian et al. 2008). A past study presented emissions of
carbonyl compounds for commonly used cookstoves in China
(Zhang and Smith 1999). However, the role of carbonyl com-
pounds in the coal smoke at Xuanwei has been largely
overlooked.

Airborne carbonyls (aldehydes and ketones) have been
attracting the attention of atmospheric scientists over the past
few decades. Carbonyl compounds are identified with natural
and anthropogenic sources. The compounds can further be
produced via primary and secondary source formation such
as incomplete combustion of fossil fuels and biomass, indus-
trial emission, vehicular exhaust, and photochemical oxida-
tion of atmospheric hydrocarbons (Atkinson 2000; Carlier
et al. 1986; Grosjean et al. 2002; Kean et al. 2001; Lee et al.

1997; Perry and Gee 1995; Yokelson et al. 1999). The life-
times of airborne carbonyls are short in the troposphere (De
Smedt et al. 2008;Wert et al. 2003), but nevertheless, airborne
carbonyls are able to undergo rapid photolysis and generate
significant amounts of free radicals and precursors responsible
for air pollution (e.g., secondary organic aerosol (SOA) and
ozone (O3) formation) (Carter 1994). Several carbonyl com-
pounds are widely accepted as toxic air contaminants and
contain potential carcinogenic and mutagenic properties
(CEPA 1993; McLaughlin 1994; NCR 1981; Pal et al. 2008;
Seco et al. 2007; WHO 2000).

Formaldehyde is a human carcinogen (group 1) (IARC
2006) and poses nasopharyngeal cancer (IARC 2004).
Repeated occupational exposure to formaldehyde in a chem-
ical factory could increase opportunities of having a health
implication such as congestion in the cornea, nasal membrane,
and pharynx (Zhang 1999). Acetaldehyde is a suspected hu-
man carcinogen (Báez et al. 2003; Zhang et al. 1994).

Indoor carbonyl concentrations are a concern as people
spend over 80% of their lifetime in an indoor environment
(Klepeis et al. 2001). Cooking and heating often involve low-
grade solid fuel usage (e.g., coal with impurities such as arsenic
and mercury) in underprivileged areas (e.g., Xuanwei) in China
(IARC 2010). The combustion processes in household coal
stoves usually generate gaseous pollutants (e.g., formaldehyde,
CO, CO2, NOx, and volatile organic compounds (VOCs)) that
are subject to indoor air pollution (Zhang and Smith 1999). The
present study deduces possible associations between exposure
to indoor coal carbonyl emissions and excess lung cancer risks
at Xuanwei. The area has been in agony of abnormal lung
cancer mortality rate in many years.

The aims of this study are to (1) characterize gaseous-phase
carbonyl compounds from 19 types of coal used in Xuanwei,
(2) determine and characterize relationships between carbonyl
compounds, and (3) estimate the potential health implications
of interior coal emissions for local inhabitants.

Materials and methods

Experimental procedures

Indoor environmental conditions mimic inhabitants
under real exposure condition in lung cancer epidemic
outbreak at Xuanwei (Bpre-1990^ kitchen design)

The experimental setup intended to mimic the exposure con-
dition in the timeline when inhabitants first started to suffer
from the outbreak (worst case scenario) (Mumford et al. 1987,
1989). Nineteen types of coal were tested for emissions. The
samples were labeled 1–19 and were collected from different
locations as noticed in Table 1. The samples collected from
different coal seams were denoted in brackets (Table 1).
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Sample 7 and 8 were classified without coal seams as the
samples were re-processed from coal lumps collected from
the surface in the communities. Sample 10 and 12 were col-
lected from different coal mines. The coal combustion exper-
iment was conducted between November 2012 and January
2013, at a kitchen area in a one-story building in a village
called Shangzuosuo (Xuanwei). All doors and windows in
the living room were closed during the experiment. The vol-
ume of the kitchen was ∼42.6 m3 (5.9 m long × 3.8 m
wide × 1.9 m high). The air exchange rate in the kitchen was
continuously monitored by measuring the first-order decay of
carbon dioxide using a Q-Trak™ indoor air quality monitor
(model 8550; TSI, Inc., Shoreview, MN, USA). The air
change rate was set as 6.9 h−1.

Preparation of fuels

A laboratory stove (internal diameter of 15 cm; shown in
Fig. S1–2 of the Supplementary Material) was used to simu-
late a fire pit for routine daily burning of coal. The position of
the stove during the experiment can be referred to Fig. S3
(Supplementary Material). Larger coal pieces were sieved to
retain only samples <5 cm in diameter, to facilitate combus-
tion performance. The stove mass (∼7 kg) and coal masses
sampled (0.8 ± 0.7 to 1.6 ± 0.1 kg) were monitored throughout
the experiment. The coal masses were a random factor and
epitomized the usual mass range used for domestic cooking
activities.

Burning cycle

Nineteen types of coal samples were used in the combustion
tests to collect gaseous samples. Analysis of samples of each
type of coal was done in triplicate. The fire was set and kin-
dling (biomass (<2 kg) contained dried sugarcane and corn
stock as combustion-supporting agents) was assured. The air
was then purged through a stove inlet to provide oxygen for
combustion and a chimney was installed over the stove to
optimize the chimney effect. When full kindling (the fire’s
longevity was ensured) had occurred (∼5 min after initial ig-
nition), ∼2 kg of the coal sample was immediately added to
the stove. After 10 min from initial ignition, the remainder of
the coal sample was used to fill up the stove. The stove was
immediately positioned above the burning coal and remained
in place until completion of the experiment. The weight of the
stove and coal samples were recorded. All biomass materials
were completely removed outdoors, prior to setting the fire. A
water pot containing 2 kg of water at room temperature was
placed above the stove. Coal lumps could melt and coagulate
during combustion, which could extinguish the fire. To simu-
late cooking in the best possible manner, the fire was stoked
and poked at the beginning and at 20-min intervals during the
combustion cycle to assure favorable air ventilation through

the coal lumps. Additional coal was added to the stove at 20-
min intervals, and the weights were recorded throughout the
cycle. The water was heated to a boil during the heating pro-
cess. The complete heating process required 30–60 min de-
pending on the different types of coal (Supplementary
Materials: Table S1). The remaining ashes were weighed after
each combustion cycle. The combustion cycle was on par with
household coal burning activity in Xuanwei (∼1 h). The fire
was either re-used (for another burning cycle with the same
type of coal) or extinguished using a water sprayer. The
weight of the coal and water was recorded at 10-min intervals
during the experiment.

Sample collection

The air samples were collected in silica cartridges impregnat-
ed with acidified 2,4-dinitrophenylhydrazine (DNPH) (Sep-
Pak DNPH-silica, 55–105 μm particle size, 125 Å pore size;
Waters Corporation, Milford, MA) at a flow rate of
0.7 L min−1 using a cartridge sampler. Collection efficiencies
were confirmed in the field by sampling carbonyls in two
identical cartridges connected in series. Efficiencies were cal-
culated as 100% (1 − Ab/Af), in which Af and Ab denote the
amount of carbonyls collected in the front and back sampling
tubes, respectively. No breakthroughwas observed in the sam-
pling flow rate and time used. The sampling flow rates were
checked in the field at the start and end of each sampling
period using a calibrated flow meter (Gilibrator Calibrator;
Gilian Instruments,W. Caldwell, NJ). ATeflon filter assembly
(Whatman, Clifton, NJ) and ozone scrubber were connected to
the front of the DNPH-silica cartridge to remove any particu-
late matter and prevent possible contamination by ozone
(Spaulding et al. 1999). Collocated samples were collected
to testify sample collection reproducibility (>95%) in the field.
A cartridge was reserved for field blank analysis during each
sampling campaign and was handled in the same manner as
the other sampling cartridges. The amount of carbonyls de-
tected in the cartridges was corrected for the field blank before
conversion to air concentration of carbonyl units. The DNPH-
coated cartridges were stored in a refrigerator (<4 °C) prior to
analysis.

Carbonyl analysis

A total of 19 carbonyls were quantified, including formaldehyde
(C1), acetaldehyde (C2), acetone (acetone), propionaldehyde
(nC3), methyl ethyl ketone (MEK), butyraldehyde/
isobutyraldehyde (iso + nC4), benzaldehyde (benz),
isovaleraldehyde (iso-C5), valeraldehyde (nC5), o-tolualdehyde
(o-tol), m-tolualdehyde (m-tol), p-tolualdehyde (p-tol),
hexaldehyde (C6), and 2,5-dimethylbenzaldehyde (2,5-DB),
heptaldehyde (C7), octaldehyde (C8), nonaldehyde (C9),
glyoxal (gly), and methylglyoxal (mgly). Unsaturated carbonyls
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such as acrolein and crotonaldehyde were detected but not re-
ported because of their low abundances. Unsaturated carbonyl
DNP-hydrazones can react with excess reagent to form adducts,
leading to ambiguities in quantification due to chromatographic
interferences (e.g., double peaks) and response factor issues (Ho
et al. 2011; Schulte-Ladbeck et al. 2001). In-house laboratory
experiments demonstrated that collection efficiencies were
>93 ± 5% for all target carbonyls under the same flow rate,
relative humidity, and temperature. Collection efficiencies for
heavy carbonyl compounds (e.g., C6) were recorded to be
>96 ± 3%. Each DNPH-coated cartridge was eluted with
2.0 mL acetone-free acetonitrile solution (HPLC/GCMS grade,
J&K Scientific Ltd., Ontario, Canada) and transferred to a vol-
umetric flask. Previous studies demonstrated that neither DNPH
nor DNPH derivatives remained in the cartridge after elution
with 2.0 mL acetone-free acetonitrile solution (Ho et al. 2007).
Certified calibration standards for monocarbonyl DNP-
hydrazones were purchased from Supelco (Bellefonte, PA) and
diluted to a concentration range of 15–3000 μg mL−1. The final
volume of each calibration solution was filled up to 2.0 mLwith
acetonitrile/pyridine (HPLC/GCMS grade, Sigma) at a concen-
tration ratio of 8:2 (v/v). The calibration curve was linearized,
and the correlation of determination (r2) was >0.999. The cali-
bration standards and cartridge extracts were analyzed by
injecting 20 μL of the solution into a high-pressure liquid chro-
matography (HPLC) system (Series 1200; Agilent Technology,
Santa Clara, CA) coupled with a photodiode array detector
(DAD). A reversed-phase separation column (4.6 × 250 mm
Spheri-5 ODS 5 μm C-18, PerkinElmer, Norwalk, CT) was
installed in the HPLC system and operated at room temperature
(25 °C). The mobile phase consisted of three solvent mixtures:
mixture A, 6:3:1 (v/v) of water/acetonitrile/tetrahydrofuran; mix-
ture B, 4:6 (v/v) of water/acetonitrile; andmixture C, acetonitrile.
The gradient programwas operated first at (80%A)/(20%B) for
1min, second at a linear gradient of (50%A)/(50%B) for 8min,
third at (100% B) for 10 min, fourth (100% C) for 6 min, and
finally at (100% C) for 5 min. The elution rate was
2.0 mL min−1. The absorbance of the 360 and 390 nm wave-
lengths was applied to identify aliphatic and aromatic carbonyls
(e.g., benzaldehyde and tolualdehyde), respectively.
Identification and quantification of carbonyl compounds were
based on retention time and peak area integration of different
carbonyl compounds. The minimum detection limit (MDL) was
estimated by analyzing a minimum of seven replicates of stan-
dard solution containing analyte at a concentration of
0.015 μg mL−1. The following equation was used to estimate
the MDL:

MDL ¼ t
n−1;1−∞¼99%ð Þ � s ð1Þ

where t(n − 1, 1−∞ = 99%) is Student’s t distribution value at n − 1
degrees of freedom and s is the standard deviation of the repli-
cates. The MDLs of the target carbonyls range from 0.002 to

0.010 ng μL−1, which can be translated to 0.169–0.846 μg m−3

at a sampling volume of 0.0237m3.Measured values, precision,
accuracy, and validity were optimized throughout the measure-
ments. Quality assurance was performed to ensure the above
attributes were within acceptable limits. A quality control pro-
cedure was included to assure a measurement precision of 0.5–
3.2% for the measured carbonyls.

Exposure assessment and risk characterization

Residents living in the area are potential receptors of airborne
carbonyls. Cancer risk due to exposure to gaseous phase car-
bonyls was estimated by considering direct inhalation expo-
sure of inhabitants in an indoor environment according to the
human health evaluation manual supplemental guidance for
inhalation risk assessment (Part F) (U.S.EPA 2011). The can-
cer risk (CR) of carbonyl compounds can be calculated by the
following equations:

CR ¼ slope factor � LADD ð2Þ

LADD ¼ C � IR� AF� EF

BW� AT� CV
ð3Þ

where LADD (mg kg−1 day−1) is the lifetime average daily
dose, C (mg m−3) is the pollutant concentration, and IR is the
average inhalation rate (m3 h−1). AF (%) is the absorption
fraction (assume 100% absorption) (Cheng et al. 2015). EF
is the exposure factor and determined by average duration in
indoor (h day−1), average indoor exposure frequency (days),
and average life expectancy (years). BW is the average body
weight (kg). AT (days) is the average exposure duration for
carcinogenic/non-carcinogenic effects. An estimated average
exposure duration of 25,550 days (70 years) for carcinogenic
effect is applied for the calculation, respectively (Hoddinott
and Lee 2000). CV is a conversion factor (from μg to mg).
The IR, EF, and BWwere calculated based on the information
given in the Chinese exposure factors handbook, and the av-
erage duration indoors was assumed based on time-activity
patterns of cooking status at kitchens in a relevant study in
China (Duan 2015; Jiang and Bell 2008). In China, popula-
tions in various locations (e.g., inland versus coastal) have
different economic conditions, dietary habits, and living
styles; thus, location and region is an exposure condition that
cannot be ignored. Further information can be referred to
Table 2. The slope factor in Eq. (2) is determined by reference
dose (RFD, ((mg kg−1 day−1)−1)) for all carbonyl compounds
according to the Integrated Risk Information System
(U.S.EPA 2015). Only formaldehyde (slope factor = 0.021
(mg kg−1 day−1)−1) and acetaldehyde (slope factor = 0.01
(mg kg−1 day−1)−1) are considered as carcinogenic substances
and therefore provided with slope factors in all measured car-
bonyl compounds. The parameters used in CR assessment
were summarized in Table S2 (Supplementary Material).
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The CR value in a range of 1–100 × 10−6 is deemed in either
acceptable (10−6) or tolerable (10−4) level for regulatory pur-
poses (Hu et al. 2012).

Statistical analysis

All the data were analyzed using SPSS statistic 21.0 (IBM®,
New York, NY) or GraphPad Prism software (Version 5 for
Windows). Figures were prepared by Origin 6.0 (OriginLab
Software Inc.). The exposure assessment and risk characteri-
zation (BExposure assessment and risk characterization^ sec-
tion) were conducted with Microsoft Office Excel 2010
(Microsoft Inc.).

Results and discussion

Characteristics of carbonyl compounds

Concentrations of carbonyl compounds

Table 1 shows the total and individual concentrations of carbonyl
compounds in different coal samples. The formaldehyde concen-
trations are in the range of 10.4 ± 5.9–502.6 ± 148.8 μg m−3.
Concentrations for the acetaldehyde range from 17.0 ± 5.9 to
195.4 ± 40.0 μg m−3. According to the World Health
Organization (WHO) guideline for the indoor environment,
formaldehyde has a 30-min average of 100 μg m−3 (WHO
2010). A total of 19 types of samples were analyzed: 11 (58%)
demonstrated formaldehyde concentrations higher than the expo-
sure limit. A previous study showed formaldehyde concentra-
tions ranged from 240 to 600 μg m−3 in an indoor (30 m3)
cigarette combustion experiment (Grimaldi et al. 1996). Typical
indoor formaldehyde and acetaldehyde concentrations could be
in the ranges of 10–50 and 5–20 μg m−3, respectively
(Sarigiannis et al. 2011). The concentration levels in the present
study are akin to those of the combustion experiment.
Formaldehyde is the most abundant compound in samples 1–7,
9–12, and 16, accounting for 21–45% of the total measured
carbonyls. Acetaldehyde is nevertheless the most abundant com-
pound in sample 8, 13–15, and 17–19 accounting for 16–33% of
the total measured carbonyls. The results are consistent with
formaldehyde and acetaldehyde as the dominant components in

a barbecue charcoal combustion study, and also indicate concen-
tration patterns of these carbonyls could be associated with
the inhomogeneous nature of the combustion raw materials
(observed high standard deviation of concentrations in
some of the sub-samples) (Kabir et al. 2010). A residential
coal combustion study in China also demonstrated formal-
dehyde and acetaldehyde were the most abundant carbonyls
in five types of coal (Feng et al. 2010). A study that com-
pared carbonyl emissions using different fuels in a diesel
engine showed aldehyde emissions were formed by incom-
plete oxidation of hydrocarbons. Formaldehyde was the
most abundant compound and accounted for over 40%,
and the next most abundant, acetaldehyde, ranged from 10
to 30% in composition; these two compounds have similar
composition characteristics with those of the present study
(He et al. 2009). According to the Agency for Toxic
Substances and Disease Registry (ATSDR), formaldehyde
is an eye, skin, and respiratory tract irritant. A minimal risk
level (MRL) of 8 ppb for respiratory health outcomes was
set to be associated with chronic inhalation exposure to
formaldehyde (ATSDR 1999). The results show a large pro-
portion of this carbonyl compound was in emissions, indi-
cating that control is possibly required.

Figure 1 shows correlations between the log-transformed
concentrations of formaldehyde and acetaldehyde, and glyoxal
and methylglyoxal. Both show positive significant correlations
(p < 0.05); however, only glyoxal and methylglyoxal demon-
strate a correlation coefficient >0.80 (n = 57). The linear relation-
ship between log-transformed concentrations of individual
glyoxal andmethylglyoxal suggests the two compounds possibly
share similar sources. A lower correlation coefficient >0.40
(n = 57) is found between log-transformed concentrations of
individual formaldehyde and acetaldehyde; this could potentially
be due to the two compounds originating from mixed sources.

A past study showed relative humidity could potentially
affect the formaldehyde emissions (Parthasarathy et al.
2011). Water solubility of the carbonyl compounds can vary
between species. Species in Fig. 1 show different Henry’s law
constants (Sander 2015). These factors can possibly contribute
to the outcome of the correlations, although these require fur-
ther investigations. Nonetheless, the limitation in the correla-
tions is that how individual combustion parameters (e.g.,
flame temperature variations) correlate to the concentration

Table 2 Information about the
Chinese exposure conditions Exposure factors Yunnan National average by provinces

Average inhalation rate (IR) (m3 h−1) 0.645 0.654

Average duration indoors (h day−1) 5.0 2.0

Average indoor exposure frequency (days) 320 221

Average life expectancy (years) 69.54 74.83

Average body weight (BW) (kg) 55.9 60.6

Average exposure duration (AT) (days) 25,550 25,550
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variations cannot be determined due to lack of collocated
measurements between the two conditions.

The concentration ratios (C1/C2) further show 60% of the
samples are formaldehyde emissions dominant over acetalde-
hyde emissions (>1). The average concentration ratios are in
the range of 0.1–3.7. The C1/C2 ratio is a common tool for
characterizing pollution sources (Hedberg et al. 2002); the
present trend may reflect a variety of contributing factors
(e.g., temperature, relative humidity, different coal types, com-
bustion conditions, and sampling procedures), rather than tak-
ing account into individual factors alone, could all play differ-
ent roles altogether in the overall variable outcome.
Concentration ratios can be used to compare inter-source sim-
ilarity. However, the ratios should be applied with caution as
the values can vary during the environmental fate of these
compounds. The chosen pairs of compounds can be highly
reactive and introduce bias to the outcome (Abdullahi et al.
2013).

The strong contribution of original biogenic compounds in
the lignite within the early stage of coal formation could ulti-
mately increase the coal rank (Meyer et al. 2014; Püttmann
and Schaefer 1990). A previous study suggested the coal com-
bustion process could be divided into three stages: initial stage
(moisture evaporation and chemical absorption), combustion
stage, and burnout stage—which were classified based on
weight and heat changes. Thermogravimetric and differential
thermal analysis showed low-rank coals could influence igni-
tion temperatures, whereas high-rank coals influenced the
burnout temperature (Moon et al. 2013).

Future studies should be concentrating on characterizing
the coal materials (maturity) and different stages of carbonyl
emissions such as using proton-transfer-reaction mass-

spectrometry (PTR-MS). This technique enables real-time
monitoring and is able to instantaneously detect and quantify
the emissions, leading to a more thorough understanding
about the combustion processes.

Carbonyl emissions from various emission sources

A few studies targeted characterizing carbonyl emissions dur-
ing emission circumstances. A previous study collected sam-
ples in two residential kitchens during a cooking period (used
towngas and liquefied petroleum gas). The formaldehyde con-
centrations were 60.4 and 151.0 μg m−3. Concentrations for
the acetaldehyde were 65.9 and 4.5 μg m−3, respectively
(Huang et al. 2011). A study investigated concentrations of
carbonyl compounds emitted during the combustion of barbe-
cue charcoals and identified formaldehyde and acetaldehyde
were the two most abundant carbonyls (Kabir et al. 2010).
Formaldehyde and acetaldehydewere the only identified com-
ponents generated by coal burning in a study that tested dif-
ferent cookstoves in China (Zhang and Smith 1999).

Many studies further characterized background concentra-
tions of carbonyls at different compartments in households. A
study measured formaldehyde and acetaldehyde levels in
Paris dwellings from potentially different sources in 61 flats
with no previous history of complaint for olfactory nuisance
or specific symptoms. The result showed average formalde-
hyde and acetaldehyde concentrations (n = 57) in the kitchen
were 21.7 ± 1.9 and 10.1 ± 1.8 μgm−3 (Clarisse et al. 2003). A
past study targeted domestic levels of formaldehyde in
kitchens in 185 homes in Perth, Australia, with a mean con-
centration of 25.9 μg m−3. The result did not exceed the rec-
ommended Australian guideline due to good inter-room

Fig. 1 Relationships between
log-transformed concentrations of
formaldehyde/acetaldehyde and
glyoxal/methylglyoxal. There
were 19 types of coal with 3
replicates (n = 57). Coefficients
and standard errors were included
in the regression equations
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mixing of formaldehyde within homes (Dingle and Franklin
2002). A similar study that measured formaldehyde concen-
trations in 399 home kitchens in Ankara in Turkey showed the
average formaldehyde concentration was 74.9 ± 3.7 μg m−3

(Vaizoğlu et al. 2003). A study showed mean indoor concen-
trations (living room and bedroom) of formaldehyde and ac-
etaldehyde in 16 homes were in the range of 18.1 ± 17.5–
46.1 ± 27.3 μg m−3 (Marchand et al. 2006). A study measured
residences’ (71 homes) indoor concentrations of formalde-
hyde and acetaldehyde in Saskatchewan, Canada. The result
suggested in both summer and winter that the formaldehyde
and acetaldehyde concentrations were in the range of
10.7 ± 6.4–36.9 ± 18.6 μg m−3 (Héroux et al. 2010).

All of the above findings suggest the usual indoor concen-
trations of formaldehyde and acetaldehyde were below
100 μg m−3, whereas a sample in the present study showed
formaldehyde concentrations from the coal emissions could
be up to ∼5 times, and several samples are at least ∼2–3 times
higher than the 100 μg m−3 level. The present study suggests
residential coal combustion at Xuanwei could emit higher
formaldehyde concentrations than ordinary indoor levels as
mentioned.

Health risk of carbonyl compounds via inhalation
exposure

Lifetime excess inhalation cancer risk

Inhalation exposure is typically the primary route of direct
exposure to airborne carbonyls. Figure 2 shows the estimated
lifetime excess inhalation cancer risk (CR) per million people

due to carbonyl exposure in the kitchen in Xuanwei, Yunnan
Province. Total carbonyl concentrations in different coal emis-
sion samples can be referred to Fig. S4 (Supplementary
Material). The non-dietary exposure in this study is defined
as human exposure to gaseous carbonyls via household air.
Total cancer risk value >10−4 is considered to be at high risk in
common regulatory programs (Chen and Liao 2006). Under
the same carbonyl exposure condition (as in Table 1), the
mean estimated excess inhalation cancer risk associated with
the exposure is in the range of 22–629 cancer cases per million
people (∼2.2–63 × 10−5) in the kitchen area at Yunnan.
Formaldehyde dominated over acetaldehyde and contributed
an average of ∼67% of the total risk in all samples. The sample
in the highest inhalation risk shows ∼29.2 times higher risk
than the lowest sample, suggesting different coal sampling
locations could contribute to the variation of inhalation risk.
Under the same set of PAC emissions, the inhabitants of
Yunnan show ∼3.6 times higher risk compared to the national
average due to different exposure conditions (Table 2) (Duan
2015; Jiang and Bell 2008). A total of 19 types of samples
were analyzed: 13 (68%) demonstrated excess inhalation can-
cer risk higher than the tolerable exposure limit and are clas-
sified as high risk. The samples are in the range of ∼1.1–6.3
times higher risk than the tolerable threshold level. The car-
bonyl levels in the kitchen could be an important reference to
other living areas in the house especially during winter as all
the house windows are usually fastened with limited ventila-
tion; in addition, inhabitants at Xuanwei spend an average of
>75% of their time per day indoors (Duan 2015). A cumula-
tive effect in combination with different carbonyls might have
contributed to the actual inhalation cancer risk outcome in an

Fig. 2 Column chart for excess cancer risks associated with inhalation
exposure of selected carbonyls in coal emissions. Columns are shown for
inhabitants of the Yunnan exposure scenario. The arrow denotes the
average value of excess cancer risk of a sample and applies to all
samples (samples 1–19). Risk error bars represent standard deviations
of the excess cancer risks. The standard deviations were the measured

variations of the selected carbonyl concentrations and led to the variations
of the risks in analysis. Each type of coal samples was analyzed with three
replicates (n = 3). Columns above the red line are classified as within the
high-risk level, whereas those below are considered as within the
tolerable-risk level
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additive manner. Other airborne contaminants (e.g., fine par-
ticulate matter and mercury as a coal impurity) during house-
hold coal combustion can also pose adverse health effects on
humans (IARC 2010; Lui et al. 2017).

The above findings suggest there is a need to revise the
current risk assessment in order to explicitly address the health
effects of environmentally relevant doses (e.g., absence of
carcinogenic risk information except for formaldehyde and
acetaldehyde, cancer potency factors in more than binary mix-
tures), considering the case of life-long exposure in indoor
dwellings.

Limitation and uncertainty discussion

Many of the studies on household indoor air pollution have
concentrated only on indoor air concentrations without con-
sidering personal exposure factors (Clark et al. 2013). The
present cancer risk calculation is an attempt to use relevant
and accessible information, as the exposure factor is specifi-
cally catered for Yunnan Province and only recently launched
(Duan 2015). However, the present CR calculation is not with-
out uncertainties. A closer approximation of the actual risks
could be produced if a range of weights, inhalation rates, ages,
and sex specific for Xuanwei inhabitants were available for
the calculations. In addition, insufficient characterization of
the sampling households, for example, the number of win-
dows and number of stoves in each household and seasonal
variation, could have affected the final cancer risk outcome.
Moreover, the limitation of slope factors and reference doses
of several targeted carbonyls could have caused a significant
under representation of the actual total risk for the analysis.
Additional studies should focus on quantifying and harmoniz-
ing these uncertainties (e.g., using personal air monitoring
devices to collect personal exposure data in Xuanwei house-
holds) to improve future cancer risk analyses.

Conclusions

The characteristics of airborne carbonyls emitted during in-
door coal combustion in Xuanwei were investigated. Fifty-
eight percent of the samples contained formaldehyde concen-
trations higher than the World Health Organization exposure
limit. Positive correlations were identified in a statistical re-
gression analysis, showing possible different emissions char-
acteristics. The lifetime excess cancer risk from inhalation of
gaseous carbonyls suggests that 13 types of samples were at
high-risk level. Acceptability of the risk depends on scientific
data and social, economic, and political factors on the per-
ceived benefits arising from exposure to an agent.

These findings support claims that household coal combus-
tion is associated with human health conditions. The results
suggest there is a need to revise the current risk assessment in

order to explicitly address the health effects of environmental-
ly relevant doses.
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