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Abstract
Wheat straw, rice straw, and corn stalks, the magpicultural crop residues in

China, were collected from six major crop produciregions, and burned in a
laboratory combustion chamber to determine ;PBburce profiles and speciated
emission factors (EFs). Organic carbon (OC) anemsdluble ions (the sum of NH
Na', K*, Mg?*, C&”*, CI, NO; and S@Q) are major constituents, accounting for 43.1
+ 8.3% and 27.4 + 14.6% of P} respectively. Chloride (Gland water-soluble
potassium (K) are the dominant ionic species, with an averag@ddmce of 14.5 +
8.2% and 6.4 + 4.4% in PM, respectively. The average’ /Kl ratio is ~0.4, lower
than 2.8-5.4 for wood combustion. Similarity measur(i.e., Student's-test,
coefficient of divergence, correlations, and realdio uncertainty ratios) show the
crop profiles are too similar for the species meadwo be resolved from one another
by receptor modeling. The largest difference wasiébbetween rice straw and corn
stalk emissions, with higher OC and lower &id K" abundance0%, 8%, and 3%
of PM, s, respectively) for corn stalks; lower OC, and figicl and K abundances
(38%, 21%, and 10% of PM, respectively) for rice straw. Average EFs wei@ 4.
3.1 g kg* for OC, 1.3 + 0.8 g k{for CI" and 0.59 + 0.56 g Kifor K*. Flaming and
smoldering combustions resulted in an average neaddfombustion efficiency (MCE)
of 0.92 + 0.03, and low elemental carbon (EC) EF24 + 0.12 g kg). OC/EC ratios
from individual source profiles ranged from 12.918 for rice straw to 24.1 + 13.5
for wheat straw. The averagé/EC ratio was 2.4 + 1.5, an order of magnitude @igh
than those from residential wood combustion (0.2.@6). Elevated emission rates
were found for OC (387 Gg yy and Cl (122 Gg yi'), accounting for 44% and 14%
of 2008 PM semissions in China.

Keywords. Source profiles; Emission factors; Emission rat€pp residues;

Biomass burning.
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1 Introduction

China is a large agricultural country with the heghcrop production in the
world (Bi et al., 2009). As combustion is a simplel effective way to remove plant
residues, open burning is a common practice durargest seasons. Large amounts
of gases and particulate matter (PM) (Andreae aedd¥] 2001; Cheng et al., 2013;
Li et al., 2014, Streets et al., 2003) are emitted affect local and regional air quality,
with adverse effects on human health, visibilitpydahe Earth’'s radiation balance
(Chow and Watson, 2011; Fiore et al., 2015; Yaalgt2017). Zhang et al. (2016)
estimate annual average PMChinese straw burning emissions from 1997 to 24113
1,036 Gigagram (Gg), based on crop yields and bhgrmetection by satellites.
Agricultural burning accounts for ~8% of anthropoigePM, s emissions over the
year and ~26% of Pp4 during harvest seasons (Zhang et al., 2016). lebrad, (2016)
reported a 34% increase in ambientZMoncentrations from agricultural burning in
the North China Plain. Cheng et al. (2014) atteduB87% of PMs mass, 70% of
organic carbon (OC), and 61% elemental carbon {@Q)rop burning in southern
China. Li et al. (2014) estimated that wheat stbamning contributed to over 50% of
PM.s, OC, EC, potassium (K), and chloride ionj@t eastern China.

The Chinese Ministry of Environmental Protection ERl 1999) has
promulgated regulations to minimize crop burningd ato seek constructive
alternatives for using the residues as soil amentsnenergy production, and animal
feed (Liu et al., 2008). However, open burningrigvalent in spite of these measures

(Huang et al., 2012b).

This paper documents laboratory combustion chameasurements of wheat
straw, rice straw, and corn stalks; residues ofdahtgpes represent ~80% of the total
agricultural burning in China. PM emission factors (EFs) and chemical source
profiles containing OC, EC, water-soluble ions, a@ments are obtained from these
tests. Similarities and differences among profitem different agricultural areas and
crop types are investigated. PMEFs and profiles are compared with those from

other anthropogenic sources.
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2 Experimental section
2.1 Sample collection

Ni et al. (2015) document the fuel collection gmdcessing. Wheat straw,
rice straw, and corn stalks were obtained from magjor crop-producing regions,
Shaanxi, Anhui, Shandong, Henan, Jiangxi and Hefosiinces. Samples were stored
at ambient temperature (~20°C) and humidity (35-456 more than one month
before the experiments. Dry mass carbon and nirogmtents, as well as the
moisture, ash, volatile matter, and fixed carbontent as received, were measured
before each burn and are listed in SupplementaeTab (Liao et al., 2004). For each
experiment, 0.1-0.2 kg of crop residues were wemjHiefore being placed on a
platform inside a custom-made combustion chamb&n(€&t al., 2015). Emissions
were drawn through a dilution sampler (Wang et2012) connected to the chimney
of the combustion chamber. Dilution with clean airambient temperatures better
represents real-world emissions as it allows ferdemsation and equilibration of the
PM s prior to measurement. Based on pilot experimemgsmal dilution ratios of 5—
15 and sampling durations of 30-50 minutes werdiegpgor each test. Dilution
ratios that are too low result in high concentradighat exceed the upper limits of
real-time instruments, whereas high dilution ratiws not allow for sufficient PM
mass to be collected on filters for gravimetric aeémical analyses. The sample
duration of 30-50 minutes accounts for the entumimg cycle, including ignition,
flaming, smoldering, and extinction. Twenty-one esiments were conducted,
including nine wheat straws, seven rice straws,fesedcorn stalks.
2.2 Chemical analysis

PM, s samples were collected on three parallel chanipetted downstream
of the dilution sampler residence chamber with &ib drawn through each filter.
Two 47 mm Whatman quartz microfiber filters (QM/Aphich were pre-fired at
900°C for 3 hr before sampling to remove adsorbeghric vapors (Chow et al.,
2010a; Watson et al., 2009), were used for OC, &fd, water-soluble ion analyses.

One 47 mm Teflon-membrane filter (Zn pore size, R2PJ047, Pall Life Sciences,

4
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Ann Arbor, MI, USA) was used for gravimetric an@mlental analyses. The sampled
filters were stored in airtight containers and iggfrated at ~4 °C after sampling to
minimize the evaporation of volatile componentsfdée and after sampling, the
Teflon-membrane filters were conditioned for 24 dir~25°C and ~35% relative
humidity, and weighed using a microbalance with 4 gg sensitivity (Sartorius,
Gottingen, Germany). Each filter was weighed asttldhree times before and after
sampling, and the net mass was obtained by suintyatte averages of pre-sampling
from the post-sampling weights (Watson et al., 20Differences among the three

repeated weights were <@ for blank filters and <2{g for sampled filters.

OC and EC were analyzed following the IMPROVE_A rthal/optical
protocol (Chow et al., 1993; 2007; 2011b). Watdtske ions, including ammonium
(NH,4"), sodium (N&), potassium (K), magnesium (Md), calcium (C&"), CI, nitrate
(NO3), and sulfate (S§), were determined by lon Chromatography (Chow and
Watson, 1999, 2016) (Dionex 600, Thermal Scienfifionex, Sunnyvale, CA, USA).
Elemental species, including K, Ca, Ti, Cr, Mn, Rg, Cu, Zn, As, Br, Ba and Pb,
were determined by Energy Dispersive X-ray fluoeese spectrometry (Watson et
al., 1999) (Epsilon 5 ED-XRF, PANalytical B.V., tidetherlands). Details of these
measurements are described in Zhang et al. (20tiLXa et al. (2012).

2.3 Similarities and differences among profiles

Four measures (i.e., the Studenttest, coefficient of divergence (CD),
correlation coefficientr), and residual ) to uncertainty ) ratios) are used to
examine similarities and differences among the @oprofiles. The Studenttstest is
used to estimate the statistical significance @etBnces between chemical fractions
of PM mass. 11P>0.05, there is more than a 95% probability thatttho profiles are
not significantly different. The CD, a self-nornmatig parameter, is used to compare

the similarities and differences between the soproéles (Zhang et al., 2014):

1&E %~ Xy
cp, = £y X
=\ p X + %, W
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wherex; represents the average concentration for a cheeooaponent from source
j; ] andk represent two different crop residues; gnés the number of chemical

components.

A CD approaching zero supports the null hypothéisat the two types of
samples are similar for the measured chemical epe€he closer the CD is to unity,
the greater are the differences between samplesré@estudies use low CD values to
infer similarity. Wongphatarakul et al. (1998) dse CD of 0.269 to show similarity
between particles from two cities. Feng et al. @dound no significant differences
in PM chemical composition between topsoil and deep profiles of the same
subtype, with the CD values ranging from 0.11 200Similar CD values (0.11-0.25)
were reported by Zhang et al. (2014) to demonstiaesimilarity of fugitive dust
profiles. Based on these prior studies, a CD<0.t&aken as an indicator of profile
similarity.

The correlation coefficient) betweerFi; / si1and F, / i2is used t@uantify
the strength of association between paired profedscripts ;" and “,” refer to the
two paired profilesF; andF;, are chemical species fractions of PM mass for sgeci
from paired sourcesand,; i1 andoi; are the uncertainties féf; andF;,, determined
from the standard deviation df; and Fi; for several representative samples,
respectively. For this study, > 0.8 is used to indicate similarity between the t

profiles.

The distribution of weighted differences (residuatertainty [R/U] =

. —F.)/J(d%+T?
(Fu-Fo) /(@ 0'2)) indicates how many of the 21 reported chemicattfonal

abundances differ by more than a given number aedainty intervals for the
profiles being compared. The chosen uncertaintgrwals are +&, +20, and +3%
(hereing is the standard deviatigmjorresponding to the normal probability density
function of 68%, 95%, and 99%espectivelyWhen 80% of thd&k/U ratios are within
+30, with P>0.05, CD<0.3, and>0.8, the two profiles are considered to be similar
within the uncertainties of the chemical fractiomdlundances (Chow et al., 2003;

Zhang et al., 2014). The varianeé) (and theR/U ratio are performance measures of
6
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effective variance (Watson et al., 1984) solutiothe chemical mass balance (CMB)
receptor model (Watson et al., 2016) that quaritity agreement between measured
receptor concentrations and those produced by thece profiles and source
contribution estimates.
2.4 Emission Factor (EF) Calculation

PM mass EFs, expressed as grams of emission pgramh of consumed dry
fuel (g kg"), were determined by dividing the mass of pollutamitted by the mass

of the fuel consumed (Andreae and Merlet, 2001):

EFPM,p — (mp,ﬂlter Vp,chimney) DRp (2)

Q  Mpruel

where the subscrigi refers to test; guer is the net mas collected on the filter (g);
Vp,chimneylS the volume of gas flowing through the chimney éach burn at standard
temperature and pressure3InQp is volume of sampled air drawn through the filter
(m®) at standard temperature and pressugger is the mass of burned fuel (kg, dry
basis);and DR, is the dilution ratio DR, is controlled by the flow balance of the
dilution sampler, and can be determined by dividotgl inflow (equals total outflow)
by sample flow of the dilution sampler (Tian et &015). TheEFpm, are averaged
for each fuel typg, to obtainEFpy; and the uncertainty of this average is estimased a

the standard deviation of the tests.

Country-wide emission estimates are obtained bytiptyihg the EFpy; for
each type of crop by the weights of the burneddre=s:

M;=PjxR;jxD;*xW;*BE; (3)
whereM; is residue burned for crop typeP,; is the annual crop yield for typeR,; is
the residue-to-crop ratio for crgpD; is the dry fraction of crop residu#y is the
proportion of residues burned in the field; @ig is the burn efficiency (the fraction
of the fuel that is actually consumed through costion). Ni et al. (2015) and
references therein, estimated values for each @dethvariables, arriving d¥; of
24140.95 Gg of wheat straw, 34490.33 Gg of ricavstr9305.52 Gg of corn stalks,
and 18581.77 Gg of other agricultural residues édieiuring 2008.
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Total emissions for each BM chemical speciesE() are calculated by
multiplying EFpm; by M; and by the fractional source profile abundan€g¥for each
chemical species ( Chow et al., 2011a; 2010b), @édrsource-profiles-based method

(SP-based method)
E; = Yj_1 EFpu j MjFy; (4)

For wheat straw, rice straw, and corn stalks, sorofiles from this study
were used. Other types of crop residues (e.g.,eand) tubers, cotton, peanut, canola,
sesame, hemp, sugarcane, sugarbeet, and tobages)l@zcount for the remaining
~20% of total crop residue combustion and wereuthetl in previous emission
inventory (e.g., Cao et al., 2008; Street et al03). For other crop residues, a

composite profile was applied, as described bytMi.g2015).

3 Resultsand discussion
3.1 PM;5 Source profiles

The combustion experiments were dominated by flgraimd smoldering, with
modified combustion efficiencies (MCE) ranging fr@®1 to 0.93 (see Supplemental
Section S1), which are on the lower end of thosdl&ming-dominated combustion
(0.9-1). This is also evident from the high OC © tios (12 to 20) shown in Table
S2, which are higher than OC/EC ratios derived framing-dominated crop
residues reported elsewhere (Andreae and Merlét,;ZDhammapala et al., 2006; Li
et al., 2007; Sahai et al., 2007; Turn et al., J98e reconstructed mass (Chow et al.,
2015) accounts for 98 = 7% (range 88-109%) of thavimetric PM s mass,
dominated by organic matter (OM; 52—96%) and inoig&ns (6—45%), as shown in
Figure S1.

Figure 1 shows the distribution of fire counts meleal in 2008 using the
Moderate Resolution Imaging Spectroradiometer (M&Drhermal Anomalies/Fire
product (MOD/MYD14A1) (NASA, 2017). Open fire cosntmainly occurred in
central and southeastern regions, accounting fOf6>4f the total fire counts, with

sparse fire counts in western China. The spatiab®ans distribution is related to

8



223
224
225
226
227

228
229
230
231
232
233
234
235
236
237
238

239
240
241
242
243
244
245
246
247
248
249
250
251

economic activities and rural population densiti®egions with higher gross
domestic product (GDP) and denser rural populatiend to contain more field burns
(Cao et al., 2008; Yan et al., 2006). Monthly véia of fire counts in Table S3
demonstrate that most agricultural fires occur eetwMarch and June, consistent

with agricultural planting and harvest activitiétugng et al., 2012a; 2012b).

Mass fractions of major PMspecies for three fuel types in six provinces are
also shown in Figure 1. For wheat straw, OC istmabsindant, ranging from 32.8%
in Hebei to 45-46% of Pp4 in Shandong, Anhui, and Henan provinces. Chlofitlg
is most abundant in rice straw, ranging from 20802« of PM5; CI is most variable
in wheat straw (from 7.9% in Anhui to 20.7% of Pih Hebei). Large variations are
also found for K in wheat straw, ranging from 2.9% in Anhui to ®b.bf PMps in
Hebei. Water-soluble ion abundances (i.e., sum l8f*"NNa’, K*, Mg®*, C&", CI,
NOs; and SQ@) are lowest for corn stalks, ranging 7.6—24.79% bk s. Student's-
tests (Table S4) shows no significant differencthat95% confidence level for crops
collected from different province$%0.05), despite the large variabilities. Table S1

shows greater similarity among the three crops.

Distributions of PMjs chemical abundances along with individual and
composite source profiles are summarized in Figyré&able 1 and Table S2. The
most abundance species is OC, ranging 38.2 + 4f0Pbd/Jgsfor rice straw to 50.5 *
5.7% of PMsfor corn stalks. Water-soluble ions account for946.11.4% of PM;s
for rice straw, a factor of two higher than theieeage abundances for wheat straw
(22.7 £ 11.9%) and corn stalks (17.0 + 9.6%). Tdrgést variation in the averages is
found for CI, ranging 8.4 = 6.4% of Pp4in corn stalks to 21.2 £ 7.3% in rice straw.
The average Kabundances are less than 50% ofaBlundances, ranging from 2.9 +
2.1% for corn stalks to 10.1 *+ 3.6% for rice strakese abundances are consistent
with those from previous studies (Hays et al., 2Q0%t al., 2007; Sillapapiromsuk et
al., 2013; Turn et al.,, 1997) as seen in Table B®vious studies found high
abundances of Chnd K from agricultural burning, with emissions and atbamces

varying with fuel composition and fire temperatu(€séristian et al., 2003; Hays et al.,

9
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2005; Keene et al., 2006; Khalil and Rasmussen3;26hudsen et al., 2004,
McMeeking et al., 2009; Oanh et al., 2011). Amomg three types of crop residues,
rice straw has the lowest OC/EC ratios and higBésind K abundances (Table S2),
possibly due to their higher combustion temperaftings and prior studies (Table S5)
show high Cl(6—27%) and K (3—25%) abundances in BNfrom crop burning, 5-20
times higher than residential wood combustion abuonds (0.13-1.5% Gind 1.4—

4.2% K.

NH," and S@ contribute 1-3% of Pl about tenfold higher than NO
(Table 1 and Table S2), consistent with past studiéed above. Variations in
nitrogen- and sulfur-containing particles (NHSQ?, and NQ) could be partly
explained by the different fuel nitrogen and sulfontents and combustion conditions
(Turn et al., 1997). The anion/cation ratio is 1#2@.09, consistent with more acidic
compounds (Supplemental Section S3) such as hyldrachcid (HCI) (Keene et al.,
2006). This is consistent with a pH value of 5 mepd by Sillapapiromsuk et al.
(2013) for water extracts of rice straw, maize desj and leaf litter smoke. By
contrast, the anion/cation ratios for fugitive dase often more alkaline, due to

abundant C4 (Wang et al., 2015; Zhang et al., 2014).

K is mostly water-soluble, as indicated by th&/KKratios averaging 0.77 +
0.13. This is consistent with findings of Watsonakt(2001), in which KK ratios
ranged from 0.1 in geological material to 0.9 ige®tive burning. Abundances of all
other elements are below 0.1%, with the exceptiobaoium (Ba, 0.28 + 0.30%) in
wheat straw (Table S2). Although in the range afdredths of one percent, Table S2
shows that several other trace elements (e.gCiTiCu, and Zn) are tenfold higher

for wheat straw than for other crop residues.

Diagnostic ratios of chemical species can be usedsaurce indicators
(Arimoto et al., 1992; Cao et al., 2012). OC/E@osahave been used to distinguish
among different combustion sources (Han et al. 6p0Riomass burning usually has
higher OC/EC ratios (3—10) (Cao et al., 2008; Lalet 2009; Sun et al., 2017; Zhang
et al., 2007; 2012) than those for coal combusfio6-3) (Chen et al., 2015; Shen et

10



281
282
283
284
285
286
287

288
289
290
291
292
293

294
295
296
297
298

299
300
301
302
303
304
305
306
307
308
309

al., 2012; Zhi et al., 2008), and engine exhau&+D.3) (Gelencser et al., 2007; He et
al., 2008; Huang et al., 2006). Based on the inddiai profiles, OC/EC ratios in this
study ranged from 12.9 £ 4.3 for rice straw to 2413.5 for wheat straw (Table S2),
lower than those reported by Sun et al. (2017)hwixC/EC ratios of ~35 for
household maize straw burning dominated by the denimig phase. OC/EC ratios
also depend on the analysis protocol applied ts#meples (Chow et al., 2001; 2004;
Han et al., 2016).

K*/EC ratios have been used to assess biomass bwaritgpoutions (Srinivas
and Sarin, 2014). Table 2 shows thdfEC ratios vary by threefold, from 1.1 + 0.7
for corn stalks to 3.5 + 2.0 for rice straw, congide to the K/EC ratios of 1-3
reported elsewhere (Hays et al., 2005; Li et &Q7). These ratios are higher than
those found for herbaceous and wood burning (O(I@n et al.,, 1997) and
household wood burning (0.76) (Zhang et al., 2012).

Elevated K and Cl abundances in PM have been reported for biomass
burning, with K/CI ratios ranging from 0.3-1 for crop residues tc-3.8 for wood
burning (Table S5). KCI ratios close to unity were also reported for sttawning
in an inland Chinese city (Shen et al., 2009). @aherage K/CI of ~0.4 for this study

falls within the range of published values.

The fact that these profiles have higistatistics (0.55<P<0.96), low CD
values (0.1<CD<0.23), high correlations (0.7¥8.87), and are within +&2for R/U
ratios (Table 3) indicates that they will probabbe collinear (Henry, 1992;
Lowenthal et al., 1992) in source apportionmentiagfons.

3.2 Speciated PM,semission factors (EFS)

EFs of PM s mass and chemical components are summarized ie Fafd he
largest EF is found for OC, ranging from 3.3 + §.Bg* for rice straw to 6.3 + 3.6 g
kg for corn stalk burning, and accounting for 38-51% of,BMmissions. EC EFs
range from 0.2 to 0.3 g Kg OC and EC EFs are consistent with those repdiyed
Andreae and Merlet (2001) for similar fuels (3.&gy* for OC, 0.69 g kg for EC).
High OC EFs (17.7 + 0.74 g Ky were reported for smoldering-dominated maize

11
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straw burning in household stoves by Sun et all 720which is ~28 times the 0.62 *
0.65 g kg' reported by Shen et al (2012) for flaming-domidat®usehold wood
burning. Higher EC EFs (1.38 + 0.70 g'§dor crop residues burned in a household
stove was reported (Shen et al., 2010), as opgosaoken burning.

CI EFs range from 0.81 + 0.42 g képr corn stalks to 1.7 + 1.2 g Rdor rice
straw, comparable to 1.54 + 0.34 gty McMeeking et al. (2009) and 1.14+0.59 g
kg' by Zhang et al. (2013). These levels are highem those of other studies, which
ranged from 0.05 to 0.89 g kdHayashi et al., 2014; Hays et al., 2005; Jen&ire.,
1998; Oanh et al., 2011; Sillapapiromsuk et al130rurn et al., 1997). The C&EF
for wheat straw burning (1.3 + 0.5 g Rgis higher than previously reported data
which is in the range of 0.12 to 1.20 g'k(Hayashi et al., 2014; Li et al., 2007; Turn
et al., 1997) (Table S6). The @F of for corn stalks (0.81 * 0.42 g Kgis much
lower than 1.3 g Kby Turn et al. (1997) and 2.7 + 1.1 g'Kgy Li et al. (2007). The
CI' fractions in total water-soluble ions were relaljvconstant among the three fuel
types, ranging 50-57%, similar to those for oth@ntass burning experiments
(Christian et al., 2003; Keene et al., 2006; McMegket al., 2009; Yokelson et al.,
2008).

K* EFs of are ~34-53% of CEFs, ranging from 0.28 + 0.12 g képr corn
stalks to 0.90 + 0.87 g Kdor rice straw. The rice straw'EF is twice the 0.45 g kg
reported by Turn et al. (1997), and much highemtiize 0.047 g KJ EF of
Sillapapiromsuk et al. (2013). The wheat straw EF (0.53 + 0.25 g Kk§ is
comparable to the 0.58 g kgeported by Li et al. (2007), but 40% lower thae t
0.89 g kg' of Turn et al. (1997). For corn stalk burninge # EF (0.28 + 0.12 g k§
is within the range 0.13-0.43 g kgeported by Andreae and Merlet. (2001), but it is
lower than the 0.67 g Kgof Turns et al. (1997) and the 1.0 + 0.65 g kfLi et al.
(2007). EFs for other ions are low, in the rangé.8fx10°to 0.18 g k-

The sum of trace element EFs excluding K (i.e, TWaCr, Mn, Fe, Ni, Cu, Zn,
As, Br, Ba, and Pb) is low, ranging from 0.15 +0@ kg' for rice straw to 0.45 +
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0.48 g kg for wheat straw. EFs for toxic elements, such as@s Pb, Mn, and Ni,
are low, with the sum being 0.06 + 0.09 g'km average.

EFs from burning of air-dried crop residues (~10%isture content) in the
laboratory chamber may differ from the real-worlshibustion, where the moisture
content can be as high as 26% (Oanh et al., 2@hd) environmental conditions are
not as well controlled (Zhang et al., 2013). Higimeoisture content can enhance
emissions of PMs, OC, and ions (N, CI and SG%) (Chen et al., 2010; Hayashi et
al., 2014; Ni et al., 2015).

3.3 PMg;sspeciated emission rates

As summarized in Table 5, BMemissions were 875 Gg in 2008, including
274.2 Gg from wheat straw burning (31% of P 292.1 Gg from rice straw (33%),
111.6 Gg from corn stalks (13%) and 197.2 Gg fraheocrops (23%). OC has the
largest emissions (387.3 Gg'yr accounting for 44% of the total. OC emissionsyva
by the type of residue, ranging from 58.4 Gg for corn stalks to 123.6 Gg Yfor
wheat straw. The sum of the water-soluble ion sioiss is 229.9 Gg ¥t accounting
for 26% of the total. These ions can take up atinesp moisture and act as cloud
condensation nuclei (Petters et al., 2009; Rissleal., 2006). The two highest ion
emissions are O(121.6 Gg y') and K (57.5 Gg yi'), constituting 53% and 25% of
total ion emissions, respectively. This is consisteith ambient observations. Park et
al. (2004) report that Cland K concentrations increased when agricultural waste
burning occurred in Korea. Shen et al. (2009) &smd high Cl and K loadings
during crop burning episodes, in contrast to haagsdwith enriched secondary
species (e.g., NFl, NOs, and S@) and dust storms events with elevated'Ca
abundances in Xi'an, China.

These results are compared (Table S7) to thosehef2006 INTEX-B
inventory (Zhang et al., 2009), which reports Cemanthropogenic PM emissions,
without agricultural burning of 1474 Gg¥ifrom power generation, 6932 Gg’yr
from industry, 4461 Gg ¥ from residences, and 398 Gg'yirom transportation.

The 875 Gg yi for open agricultural burning estimated here dtutsts more than
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half of the power generation and more than twice transportation emissions

included in the INTEX inventory.

4 Conclusions

PM. s chemical source profiles and speciated EFs @Q€.,, EC, water-soluble
ions, and elements) from the combustion of cromlues(i.e., wheat straw, rice straw,
and corn stalks) were investigated and compareu d@ta from the literature. OC and
water-soluble ions (sum of NH Na', K*, Mg?*, C&*, CI, NOy, and SG) are major
constituents, accounting for an average of 43.13%08and 27.4 + 14.6% PMmass,
respectively. Cland K are the dominant water-soluble ions, ranged 148%2% and
6.4 £ 4.4% in PN, respectively. Source profiles within a fuel typere too similar
for the measured species to be separated by recapttels, but they probably differ
enough from other source types to be separated thhem. Species with the highest
EFs are OC (4.8 + 3.1 g R} followed by C1(1.3 + 0.8 g k), and K (0.59 + 0.56 g
kg?). Majorities of the elemental potassium are wat#uble, with an average &
ratio of 0.77 + 0.13. Average "KEC ratios in crop residues was 2.4 + 1.5, much
higher than those derived from residential wood lzestion (0.2—-0.76) by Fine et al.
(2001, 2004), indicating HEC ratio could be used as indicator to distinguisé
source subtype contribution from biomass burningtall emissions were estimated
for 2008, with 387.3 Gg OC, 121.6 Gg,Cind 57.5 Gg K To develop effective
pollutant control strategies, comprehensive emisdioventories including major

biomass combustion are needed.
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Figure 1. Chemical composition of PM from wheat straw, rice straw, and corn stalk burns
in Shaanxi, Anhui, Shandong, Henan and Hebei aadgdi Provinces. The map shows
locations where crop residues were produced aridatetl. Histograms show abundances of
major chemical components in BMemissions from burning each residue. The map also
shows the locations of agricultural fires (22,586 2008) as identified by NASA (2017) (see

Supplemental Table S3)Other measured ions, NaNH,", Mg**, C&”*, and NQ, had PM
abundances <39 With the exception of K, measured elements hadddmnces <1%.
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692 Table 1. Distribution of chemical abundances in RiWhass (wt % of Pl mass)
Species in PMsmass abundance (%)

<0.01% 0.01%~0.1% 0.1~1% 1~-10% >10%

Mg™, Ca, Ti, + o bt oo

wheat Mn, Ni, As Cr, Fe, Cu, Zn, Na ’.Cé ’ EC, NH', K%, SQ7, OC, CI

straw NO;s, Ba K
Br, Pb

. Ca, Ti, Cr
rice o 4 . EC, N&, NH,", oG, K,
Straw Xsrl,lixlg, Cu, Fe,Zn,Br,Ba Mg, NO, ca" SOF CI K.

corn Ti, Cr, Mn, Mg*, Ca, Fe,
stalk Ni, Cu, Zn As, Br, Ba, Pb

EC, Nd, NH," K",

Ca N0 1 'gof

ocC
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Table 2. Average ratiosf K/EC and K/ EC for crop residue emissions from this study

compared to similar measurements reported elsewhere

Measurement PM K/EC K*/EC
Type of fuel . . : References
approach size ratio ratio
wheat straw chamber PM,s 2.85+1.36 2.26+0.80 this study
rice straw  chamber PM,s 4.68+2.49 3.45+1.90 this study
corn stalk chamber PM,s 1.48+0.79 1.12+0.68 this study
wheat straw field measurement PM,s 0.94 1.18 Li et al., 2007
wheat straw chamber PM,s 2.9 2.2 Hays et al., 2005
corn stalk  field measurement PM,s 2.29 2.86 Li et al., 2007
biOMass 2gumr;ﬁn(;om|nated TSP 01 / ?ggéeae etal.,
wood wind tunnel PM,, 0.2 0.19 Turn et al., 1997
wood field measurement PM,s 0.47 0.76 Zhang et al., 2012
wood field measurement PM,s 0.01-0.26 / Fine et al., 2001
wood field measurement PM,s 0.03-0.46 / Fine et al., 2004

% EC was measured as soot by light absorption.
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Table 3. Similarity statistics for chemical profiles fronfférent agricultural fuels.

t-statistic¢  CD° Correlatiofi Percent distributich

Profile#1 Profile#2 P values coefficient f) 5 <% <%
wheat straw  rice straw  0.56 0.23 0.86 48% 96% 100%
wheat straw  cornstalk  0.96 0.21 0.77 60% 96% 100%
rice straw cornstalk  0.55 0.10 0.87 68% 96% 100%
& If P>0.05, there is more than a 95% probability tha ttvo profiles did not differ
significantly;

® The coefficient of divergence (CD) is a self-nolimiag parameter, ranging between zero
and unity. The closer the CD to zero, the morelamiietween the two profiles;

°r between the two fractional source profile speci@s sources and, (i.e., Fi; and F;y)
divided by their associated uncertainties éndg;) quantifies the strength of association
between paired profiles;

¢ Fraction of chemical abundances that differ by lgmn multiples of the precision of the
difference as determined from residual to uncegai(R/U) ratios, whereR/U =

(Fi=F) /@ +T)
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Table 4. Emission factors of PbAmass and chemical components for each crop antidor
average of all three crops.

Chemical

Composite average +

. Wheat straw Rice straw Corn stalk .
species standard deviations
PM,s(g kgh) 11.4+4.9 8.5+6.7 12.0+5.4 10.6 +5.6
OC (g kg 5.1+3.0 3.3+28 6.3+3.6 48+3.1
EC (g kg") 0.24 +0.11 0.21 +0.13 0.28 +0.09 0.24 +0.12
NH," (g kg)  0.18 £0.09 0.14 £0.10 0.12 £0.12 0.15 £ 0.10
Na' (g kg") 0.09 +0.08 0.17 +£0.09 0.15+0.13 0.13+0.10
K* (g kg" 0.53 £0.25 0.90 +0.87 0.28 £0.12 0.59 + 0.56
Mg (g kg')  0.0067 +0.0055 0.016 +0.011  0.011+0.008 0.0D1089
cad* (gkdg)  0.082+0.072 0.077+0.03  0.088+0.043  0.081052
Cl (g kg? 1.30 + 0.46 1.7+1.2 0.81 +0.42 1.3+0.8
NO; (g kg')  0.022+0.011 0.029+0.015 0.021+0.012  0.0B4043
SOZ (g kg")  0.086 +0.079 0.24 +0.16 0.24 +0.07 0.17 £0.13
K (g kg™ 0.56 +0.31 1.20+1.12 0.380.14 0.760.72
Ca(mgkg) 0.85+2.1 ND* 1.743.3 0.82+2.14
Ti (mg kg") 20+26 0.08+0.08 0.27+0.32 1.0£2.0
Cr(mgkg) 1.1+15 0.076+0.097  0.17+0.37 0.60+1.12
Mn (mg kg')  0.29 +£0.37 0.56+0.58 0.62+0.50 0.47+0.47
Fe(mgkd) 1.2+16 1.5+0.7 2.0+1.5 1.5+1.3
Ni (mg kg)  0.79+0.87 0.21+0.17 0.27+0.32 0.51+0.66
Cu(mgkg) 3.3+4.2 0.31+0.24 0.33+0.10 1.8+3.2
Zn(mgkg) 4.4%55 1.1+0.8 1.1+1.3 2.7+4.1
As (mg kg)  ND* 0.084+0.16 3.9+5.3 0.962.92
Br (mg kg") 1.1+0.9 3.4+1.1 5.3+4.9 3.0+2.9
Ba (mgkg)  21.9+27.3 1.4+1.3 4.1+5.0 11.9+420.9
Pb (mgkg) 2.3+25 0.86+0.81 7.8+10.3 3.3+5.6

*ND denotes not detected or lower than backgroendll
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711 Table5. Estimates of 2008 annual emissions (Gg) from cesdues burning in China

PME  OC ECC NHS N& K Mg* c&  CI NO; SO K (Ejlt;?]'énté
wheat straw 2742 1236 579 434 217 128 0.6 981. 31.3 053 207 173 1.23
fice straw 2921 1142 724 483 587 311 055 62.658.6 1.00 828 405 043
corn stalk 1116 584 261 112 140 26 010 08215 020 223 43  0.30
otherd 197.2 911 446 279 242 110 020 151 242 0.453.16 164  0.60
total 8751 3873 201 131 119 575 102 696 .42l 2.17 158 785 256

712 *PM,semissions werestimated as the product of the amount of cropluesi burned in the field and the correspondingdsFshown in Eq. 4;
713 " Emissions of OC and EC were presented in Ni £2Gi15);

N
~ 714 °Other elements included all the elements list ibnl&d except for K;

715 ?Other type of crop residues included straw of sayh tubers, cotton, peanut, canola, sesame, Iseiggrcane, sugarbeet, and tobacco leaf; for othest
716  of crop residues, composite source profiles in @84 are used.



Highlights:

*  Source profiles and EFs of crop residue open burning specific to Chinawere
determined.

* Nosignificant differences existed in profiles for the same crop from different
producing aress.

* Nosignificant differences were found in profiles among different type of crops.

* Potassium and chloride were major ions emitted from crop residue burning.

*  PMjsand its mgjor component emissions from crop residue open burning for 2008
were estimated.



