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Abstract The carbonaceous aerosol concentrations in coarse
particle (PM10: Dp≤10 μm, particulate matter with an aero-
dynamic diameter less than 10 μm), fine particle (PM2.5: Dp≤
2.5 μm), and ultrafine particle (PM0.133: Dp≤0.133 μm) car-
bon fractions in a rural area were investigated during haze
events in northwestern China. The results indicated that
PM2.5 contributed a large fraction in PM10. OC (organic car-
bon) accounted for 33, 41, and 62 % of PM10, PM2.5, and
PM0.133, and those were 2, 2.4, and 0.4 % for EC (elemental
carbon) in a rural area, respectively. OC3 was more abundant
than other organic carbon fractions in three PMs, and char
dominated EC in PM10 and PM2.5 while soot dominated EC
in PM0.133. The present study inferred that K+, OP, and OC3
are good biomass burning tracers for rural PM10 and PM2.5,
but not for PM0.133 during haze pollution. Our results suggest
that biomass burning is likely to be an important contributor to

rural PMs in northwestern China. It is necessary to establish
biomass burning control policies for the mitigation of severe
haze pollution in a rural area.

Keywords Particulate matter (PM) . Elemental carbon .

Organic carbon . Rural area

Introduction

In recent years, haze pollution is extremely severe in China,
accompanied by poor visibility and air quality (Huang et al.
2014). Many studies have reported its chemical composition,
source apportionment, and radiative effect (Li et al. 2012;
Cheng et al. 2013; Wang et al. 2014; Zhang and Mao 2015).
Chemical composition showed that carbonaceous aerosol con-
stitutes a major fraction of the urban particles during haze
events, which is essential for controlling particle levels and
reducing the impacts on the environment and health (Huang
et al. 2011, 2014; Zheng et al. 2011). Source apportionment of
particulate matter (PM) indicated that the contribution of bio-
mass burning is higher in a rural area compared to that in an
urban area (Wang et al. 2006; Zhu et al. 2012). Control of
primary particulate emissions and secondary aerosol precur-
sors from fossil fuel combustion and biomass burning could
be an efficient strategy for improving air quality in China (Cao
et al. 2005, 2012).

According to the Interagency Monitoring of Protected Vi-
sual Environments (IMPROVE) protocol of the thermal/
optical reflectance (TOR) method, four organic carbon frac-
tions (OC1–4) and three elemental carbon fractions (EC1–3)
can be defined (Chow et al. 1993, 2004) and EC can be divid-
ed into char (EC1−OP) and soot (EC2+EC3) (Han et al.
2007). Carbon fractions, OC/EC, and char/soot have been
applied to identify the source apportionment of particles
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(Cachier et al. 1989; Cao et al. 2013; Kim et al. 2004; Zhu
et al. 2014). Combining the tracer of K+, carbon fractions were
also inferred as biomass burning tracers for PM (Chuang et al.
2012). The previous studies of carbonaceous aerosols largely
focused on the physicochemical characteristics and were
mainly performed for urban areas in China (Cao et al. 2012,
2013; Fu et al. 2012; Huang et al. 2012; Zheng et al. 2011).
Nevertheless, the investigation is scarce for PM10, PM2.5, and
PM0.133 simultaneously during rural haze events in China. The
objective of this study is to reveal the distributions and rela-
tionships of carbon fractions and to investigate carbon frac-
tions as biomass burning tracers for PM10 (Dp≤10 μm, par-
ticulate matter with an aerodynamic diameter less than
10 μm), PM2.5 (Dp≤2.5 μm, particulate matter with an aero-
dynamic diameter less than 2.5 μm), and PM0.133 (Dp≤
0.133 μm, particulate matter with an aerodynamic diameter
less than 0.133 μm) during haze events at a rural site.

Materials and methods

Sample collection

Sampling was conducted at a rural site (34.12° N, 108.62° E)
in Huxian County, Shaanxi Province, northwestern China

(Fig. 1). The map presents aerosol optical depth, retrieved
from satellite (Terra/Modis) observations during 17–26 Janu-
ary 2014 (http://www.nasa.gov). In the monitoring site, it was
common for residents to use coal and biomass for cooking and
heating in winter. The sampling point was on the rooftop of a
private house, which was located at 3 m above the ground
level in a village of Huxian County.

PM10, PM2.5, and PM0.133 samples were collected simulta-
neously during the high-pollution event of 17–26 January
2014 by using twoMiniVol Portable Air Samplers (Airmetrics
Inc., 2095 Garden Ave. Suite 102 Eugene, OR 97403, USA)
operating at 5 L/min and a personal active nanoparticle sam-
pler (PENS) with 1.5 L/min, respectively (Cao et al. 2005;
Tsai et al. 2012). The samples were collected on 47-mm
(PM10 and PM2.5) and 37-mm (PM0.133) Whatman quartz mi-
crofiber filters (QM/A). All quartz filters were pre-heated at
900 °C for 3 h and then stored in aluminum foils before sam-
pling. The filters were stored in a refrigerator at about −20 °C
immediately after sampling to prevent the evaporation of vol-
atile components. The mass concentrations of PM10, PM2.5,
and PM0.133 were determined gravimetrically using a Sartori-
us MC5 electronic microbalance (Sartorius, Gottingen, Ger-
many) with a ±1-μg sensitivity. The filters were analyzed
gravimetrically after a 24-h equilibration at a temperature be-
tween 20 and 23 °C and a relative humidity (RH) between 35
and 45 %. The net mass was obtained by subtracting the av-
erage of pre-sampling weights from the average of post-
sampling weights. Differences among replicate weighings
were <10 μg for pre-sampling quartz filters and <20 μg for
post-sampling quartz filters. Field blanks were collected to
correct the mass concentrations.

Chemical analysis

All the filters were analyzed for carbon fractions using a DRI
Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic
Inc., Calabasas, CA, USA). Carbon fractions were analyzed
following the Interagency Monitoring of Protected Visual En-
vironments (IMPROVE-A) thermal/optical reflectance (TOR)
protocol (Chow et al. 2007). The method produced data for
four OC fractions (OC1, OC2, OC3, and OC4 in a helium
atmosphere at 140, 280, 480, and 580 °C, respectively), a

Table 1 The concentrations of mass and carbon fractions for PM10, PM2.5, and PM0.133

Mean conc. and stdev. (μg m−3) OC1 OC2 OC3 OC4 OP EC1−OP EC2 EC3 OC EC PM conc.

PM10 Ave. 14.2 16.0 23.6 18.9 29.4 4.8 1.0 0.1 102.3 6.0 318.2

Stdev. 4.6 4.4 5.5 4.8 12.9 1.3 0.2 0.1 24.6 1.5 84.7

PM2.5 Ave. 11.9 13.0 19.1 15.0 23.8 4.1 0.5 0.0 82.9 4.6 208.1

Stdev. 3.5 3.5 4.6 4.9 11.9 1.1 0.1 0.0 20.9 1.1 73.2

PM0.133 Ave. 8.9 7.8 15.4 8.5 8.3 0.1 0.3 0.0 48.9 0.4 79.0

Stdev. 2.3 2.6 6.4 3.7 3.4 0.2 0.1 0.0 18.1 0.3 28.1
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Fig. 1 Geographic location of the rural site (star) with haze events of 17–
26 January 2014
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pyrolyzed carbon fraction (OP, determined when reflected la-
ser light attained its original intensity after oxygen was added
to the combustion atmosphere), and three EC fractions (EC1,
EC2, and EC3 in a 2 % oxygen/98 % helium atmosphere at
580, 740, and 840 °C, respectively). The IMPROVE protocol
defined OC as OC1+OC2+OC3+OC4+OP and EC as
EC1+EC2+EC3−OP. The EC fraction was also divided into
char and soot. Char is defined as EC1 minus OP, and soot is
defined as the sum of EC2 and EC3 (Han et al. 2009). The
analyzer was calibrated with known quantities of CH4 each
day. Replicate analyses were performed once every ten sam-
ples. A blank sample was also analyzed in order to correct the
sample results. The detailed quality assurance/quality control
(QA/QC) procedures have been described elsewhere (Cao
et al. 2003; Chow et al. 2011).

A Dionex-600 Ion Chromatograph (Dionex Inc., Sunny-
vale, CA, USA) was used to determine the concentration of
K+. The instrument was equipped with an IonPacCS12A col-
umn (20 mM methanesulfonic acid as the eluent) to analyze
the cations. The minimum detection limit was 0.001 μg/mL
for K+. Standard reference materials produced by the National
Research Center for Certified Reference Materials (Beijing,
China) were analyzed for QA/QC purposes. All of the report-
ed K+ concentrations were corrected using the field blanks.
The experimental uncertainty was ±0.01 for K+. The overall
uncertainty in sampling and analysis is reasonable.

Results and discussion

PM concentration and carbonaceous contributions

As shown in Table 1, daily average concentrations of PM10,
PM2.5, and PM0.133 were 318.2±84.7, 208.1±73.1, and 79.0±
28.1 μg m−3 during the haze events, respectively. Similar var-
iations of mass and OC were obtained for PM10, PM2.5, and
PM0.133; nevertheless, this was not seen for EC. During the
sampling period, PM0.133 accounted for 17 % to 30 % with an
average of 24 % of PM10 and 28 % to 52 % with the average
of 38 % of PM2.5. PM2.5 accounted for 54 % to 74 % with
an average of 64 % of PM10. The results indicated that PM2.5

comprised a large fraction in PM10 during the sampling
period. It is worthy to note that measurements of filter samples
are influenced by both positive and negative artifacts (Watson
and Chow 2011). The previous results showed that the
evaporation loss of collected particles during a single filter
sampling process is severe, accounting for 5.8–36.0 % of
PM2.5 (Liu et al. 2014, 2015).

The average OC and EC concentrations for PM10 were
102.3±24.6 and 6.0±1.5 μg m−3, while those for PM2.5 were
82.9±20.9 and 4.6±1.1 μg m−3, respectively. The lowest OC
and EC concentrations were obtained for PM0.133 with 48.9±
18.1 and 0.4±0.3 μg m−3, respectively (Table 1). The ratios of

maximum OC to minimum OC for PM10, PM2.5, and PM0.133

were 2.3, 2.3, and 3.7, respectively, while those for EC were
2.1, 2.2, and 3.5, respectively (Fig. 2). The results indicated
the variability for OC and EC were comparable among PM10,
PM2.5, and PM0.133.

As shown in Fig. 3, total carbonaceous aerosol (TCA=
OC×1.2+EC) contributed 41, 52, and 75 % of PM10, PM2.5,
and PM0.133, respectively (White and Roberts 1977; Turpin
and Lim 2001). OC accounted for 33, 41, and 62 % of PM10,
PM2.5, and PM0.133, whereas EC accounted for 2, 2.4, and
0.4 % of PM10, PM2.5, and PM0.133, respectively. Less than
2.5 % of char and soot resided in PMs was observed. The
percentage of TCA in PM10 was lowest among three PM sizes
due to higher contributions of geological matter in coarse
particles.

Carbon fractions for PM10, PM2.5, and PM0.133

As shown in Table 1, for PM10 and PM2.5, OC3 was the most
abundant carbon fraction, followed byOC4, OC2, and OC1 in
OC fractions. EC1−OP is dominant in EC fractions. The
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ranking order for PM0.133 was OC3>OC1>OC4>OC2 and
EC2>EC1−OP>EC3, respectively. OP was the most abun-
dant carbonaceous fraction in both PM10 and PM2.5, indicat-
ing a large amount of low-volatility species in OC particles of
PM10 and PM2.5, e.g., humic-like substances as stated by
Schmidl et al. (2008). The concentration of EC1−OP was
higher than any other elemental carbon fractions in PM10

and PM2.5, while EC2 was the highest in PM0.133. EC3 was
almost under the method detection limit in PM10, PM2.5, and
PM0.133. The results showed that char dominated EC in PM10

and PM2.5 and soot dominated EC in PM0.133, which were
consistent with the previous study (Zhu et al. 2010). PM0.133

OC accounted for 59 % of PM2.5 OC, whereas PM0.133 EC
accounted for 9% of PM2.5 EC. PM2.5 OC accounted for 81%
of PM10 OC, and that for PM2.5 EC to PM10 EC was 77 %,
which reflected the presence of richer OC and EC content for
PM2.5. Less contribution of EC was observed in PM0.133.

There were distinct differences among PM10, PM2.5, and
PM0.133 samples for carbon fraction contributions (Fig. 4).
The contributions of four organic carbon fractions (OC1,
OC2, OC3, and OC4) to total carbon (TC=OC+EC) in
PM10, PM2.5, and PM0.133 were comparable, which ranged
from 12.7 % to 22 % in PM10, 13 % to 21.8 % in PM2.5,

and 16 % to 31 % in PM0.133, respectively. EC1−OP
accounted for 4.5 % and 4.8 % of TC in PM10 and PM2.5

samples, higher than that in PM0.133 samples (0.2 %). EC2
contributed 1 % for TC in PM10 samples, while lower
contributions of 0.6 % and 0.7 % were found in PM2.5 and
PM0.133, respectively. The results were consistent with the
previous study which showed EC1−OP dominated EC in
coarse and fine particulate matter (Zhu et al. 2010).

Correlations of carbon fractions for PM10, PM2.5,
and PM0.133

Figure 5 shows that OC and EC are moderately correlated in
PM10 (R=0.66, p=0.03925) and PM2.5 (R=0.67, p=0.03445),
respectively, indicating that OC and EC for PM10 and PM2.5

are produced from complicated contributors. The result is dif-
ferent from the carbonaceous content in PM0.133, as OC and
EC are significantly correlated (R=0.92, p<0.0001). Correla-
tions among carbon fractions of PM10, PM2.5, and PM0.133 are
shown as follows. Strong correlations were observed among
OC1, OC2, and OC3 for PM10 (R, 0.84~0.99) and PM2.5 (R,
0.85~0.99), which attributed to the common contributors of
OC1–3. OC4 was not correlated evidently with other fractions
for PM10 and PM2.5, except that between OC4 and EC1−OP
for PM10. There was a low correlation between EC2 and EC3,
and EC3 and EC1−OP for PM10 (R≈0.70). Low correlations
were obtained among other carbon fractions for PM2.5. Sig-
nificant correlations among carbon fractions for PM0.133

showed impacts from a combination of common source
contributions.

The average ratios of OC to EC were 17.3 and 18.1 for
PM10 and PM2.5, respectively, while those for PM0.133 were
much higher. The ratios are much higher than those from
previous researches (Cao et al. 2007; Chow et al. 2004). The
higher OC to EC ratio for PM0.133 is due to the lower amount
of EC contained in PM0.133 and a certain amount of volatile
organic compounds, which may have been condensed to be-
come OC after leaving the burning sites (Robinson et al.
2007). These results indicate that OC concentrations at the
rural site would be heavily influenced by secondary OC
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compounds or biomass burning emissions, which can affect
the OC/EC ratio significantly.

The ratios of char to soot were 4.4, 8.9, and 0.2 for PM10,
PM2.5, and PM0.133, respectively (Fig. 5). The ratio for PM2.5

was similar to the value from biomass burning sources (Cao
et al. 2005). For PM0.133, the char to soot values vary low
because the amounts of char and soot in PM0.133 are very
low and invar iab le (char, 0~0 .6 μg m− 3 ; soot ,
0~0.9 μg m−3). OC to EC and char to soot ratios among

PM10, PM2.5, and PM0.133 varied largely, which indicated
the effect of PM size distribution on source identification is
worth investigating.

Assessment of biomass burning tracers for PM10, PM2.5,
and PM0.133

Aerosol K+ is the recognized biomass burning tracer (Andreae
and Merlet 2001). Therefore, K+ can be used to assess the
capability of carbon fractions as biomass burning tracers
(Chuang et al. 2012). The investigations of carbon fractions
as biomass burning tracers among PM10, PM2.5, and PM0.133

were also conducted in the present study. K+ had a significant
correlation with PM10 (R=0.92, p<0.0001) and PM2.5 (R=
0.96, p<0.0001), while a poor correlation (R=0.30, p=
0.41547) was found between K+ and PM0.133 (Fig. 6). The
results indicated biomass burning emissions were the impor-
tant contributors to PM10 and PM2.5 at the rural site. K

+ is a
primary product from biomass burning emissions, while the
secondary condensation of gaseous precursors contributes
largely to PM0.133 when biomass burning smoke is cooled as
well as other factors (Hata et al. 2014), which contributed to
the poor correlation between K+ and PM0.133.

Among the resolved compositions, K+ is highly correlated
with OP (R=0.91, p=0.00026) and moderately with EC2 (R=
0.75, p=0.01), OC3 (R=0.74, p=0.014), and OC2 (R=0.68,
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p=0.03) in PM10. K
+ is also highly correlated with OP (R=

0.90, p=0.00035) and moderately with OC2 (R=0.64, p=
0.04827) and OC3 (R=0.65, p=0.04057) in PM2.5. Poor cor-
relations among K+ and PM0.133 carbon fractions were ob-
served at the rural site (R, 0.17~0.32), which was consistent
with the suggestion discussed in the previous section that sec-
ondary condensation of gaseous precursors from biomass
burning was an important source of PM0.133 in the rural area
(Fig. 7).

Based on this assessment, OP, OC3, and EC2 for PM10 can
be biomass burning tracers; those for PM2.5 are OP, OC2, and
OC3, but no carbon fraction can be a biomass burning tracer
for PM0.133. Certainly, there are also some limitations in the
study, such as different samplers using, and the uncertainty of
the thermal optical analysis.

Conclusions

In this study, the carbon fractions of PM10, PM2.5, and PM0.133

at a rural site during haze events were determined. The main
findings are as follows:

(1) The concentrations of PM10, PM2.5, and PM0.133 during
the haze events were 318.2±84.7, 208.1±73.1, and 79.0
±28.1 μg m−3, respectively. Given the correlations
among K+ and PMs, the contributions of biomass burn-
ing were higher for PM10 and PM2.5 compared to that for
PM0.133.

(2) Higher correlations among carbon fractions were obtain-
ed in PM0.133 than those in PM10 and PM2.5, which
showed the impacts from a combination of common
source contributions for PM0.133.

(3) OC3 and OP were more abundant than other organic
carbon fractions in PMs. The present study inferred that
K+, OP, OC3, and EC2 are good biomass burning tracers
for PM10, and those for PM2.5 are K+, OP, OC2, and
OC3. A similar tracer was not observed for PM0.133.

This study provides new insights regarding the rural carbo-
naceous aerosol for coarse, fine, and ultrafine particles during
severe haze pollution, and suggests that stringent controls on
rural biomass burning activities could be efficient measures to
reduce haze pollution in northwestern China.
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