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Abstract: Volatile organic compounds (VOCs) and formaldehyde are ubiquitous in indoor environment. 16 

Inhalation of VOCs can cause irritations, difficulty breathing, and nausea, and damage the central 17 

nervous system as well as other organs.  Formaldehyde is even a carcinogen. Removal of VOCs and 18 

formaldehyde is thus critical to control indoor air quality (IAQ). Photocatalytic oxidation has been 19 

demonstrated its feasibility to remove toxic VOCs and formaldehyde from indoor environment. The 20 

technique is highly-chemical stable, inexpensive, poisonless, and capable of removing a wide varsity 21 

of organics under light irradiation. In this paper, we review and summarize the traditional air cleaning 22 

methods and current photocatalytic oxidation approaches in both of VOCs and formaldehyde 23 

degradation in indoor environment. Influencing factors such as temperature, relative humidity, 24 

deactivation and reactivations of the photocatalyst are discussed. Aspects on the application of the 25 

photocatalytic technique to improve the IAQ are suggested.   26 

Keywords: VOCs, formaldehyde, photocatalysis, review, influencing factors. 27 
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1. Introduction 28 

As more illnesses being attributed by indoor air pollution, indoor air quality (IAQ) of residential 29 

units and workplaces is a serious concern. Human beings spend >80% of lifetime indoors, including 30 

any of living and working places such as dwellings, offices, and workshops [1,2]. Typical indoor air 31 

pollutants are particulate matters (PM), nitrogen oxides (NOx), carbon monoxide (CO), volatile organic 32 

compounds (VOCs) and formaldehyde. Among those, VOCs [3] and formaldehyde [4] are classes of 33 

prominent and representative indoor pollutants. The United States Environmental Protection Agency 34 

(U.S.EPA) estimated that the VOCs levels in indoor air is typically 5-10 times higher than that of 35 

outdoor air [5]. Currently, over 50% of the precedence-controlled pollutants proposed by U.S.EPA are 36 

VOCs [6]. Formaldehyde is differentiated from VOCs because of its ubiquitous presence and various 37 

adverse effects on human health. In further, it is a challenge to collect and quantify formaldehyde in the 38 

airs owing to its higher polarity and reactivity compared with VOCs. Distinct monitoring and 39 

measurement methods are thus required. The most commonly used offline method of simultaneous 40 

determination of formaldehyde is to collect the carbonyls on solid sorbents coated with a suitable 41 

derivatization agent (e.g., 2,4-dinitrophenylhydrazine (DNPH)), followed by solvent desorption and 42 

liquid injection for analytical analysis (e.g., high-pressure liquid chromatography (HPLC)) [7,8]. 43 

Many VOCs and formaldehyde are ubiquitous in indoor environment in view of the presence of 44 

typical indoor emission sources [2,9,10]. Indoor VOCs are produced from a variety of sources, 45 

including the utilization of consumer household products, emissions from adhesives and building 46 

materials, and combustion processes [10-12]. VOCs are easily absorbed by skin and mucous 47 

membranes, causing consequences of damage to human organs and metabolic systems. Few of VOCs 48 

are also linked with sick building syndrome (SBS) [13,14]. Formaldehyde is one of the representative 49 

oxygenated-VOCs. More than 65% of global formaldehyde is used to synthesize resins such as urea-50 

formaldehyde (UF), phenol-formaldehyde (PF), and melamine-formaldehyde (MF) which are widely 51 

used in construction materials, wood processing, furniture, textiles, carpeting, and chemical industries 52 

[15]. In addition, it is strong persistent and thus can slowly release from the materials in an extensive 53 

period [4]. Formaldehyde is classified as a human carcinogen and it has been given more attention 54 

because of its adverse health effect [16]. Therefore, the removal of indoor VOCs and formaldehyde is 55 

of widespread interest in view of avoiding the potential imposed adverse effects on human health. 56 

Emission source control, ventilation, and air cleaning are the three important approaches to 57 

improve indoor air quality [17]. Among these air pollution control strategies, air cleaning with 58 

Advanced Oxidation Processes (AOPs) has been drawn more and more attention because of the restraint 59 

in the production of secondary pollution. Photocatalysis, as a promising technology developed since 60 

1972 [18], is defined as the process by which various environmental pollutants are degraded on the 61 

surface of a semiconductor photocatalyst when exposed to sufficiently energetic irradiation source, and 62 

is an important group of AOPs [19]. The merit of photocatalysis is that it can be operated at room 63 

temperature and is capable of degrading many organics under light irradiation. In the past two decades, 64 

a lot of studies have been conducted for the photocatalytic oxidation of VOCs and formaldehyde which 65 



 

 
3 

 

are beneficial to solve the indoor pollution issues [20]. TiO2 has been the dominant photocatalyst 66 

because of its superior photocatalytic oxidation ability, high photocorrosion resistance, and nontoxic 67 

properties [21]. TiO2 immobilized on different substrates can photocatalytic degrade indoor air 68 

pollutants in a flow system under UV light irradiation [20,22]. However, TiO2 can only be activated by 69 

Ultraviolet (UV) light because of its large band gap (3.2 eV). UV light accounts for only 5% of solar 70 

energy [23]. Although dye-sensitized and transition metal-doped or nonmetal-doped TiO2 can extend 71 

its optical absorption to visible light range, many researchers focus their efforts on the development of 72 

novel non-TiO2 catalysts with low band gaps [24-28]. This interest is due to the fact that stable and 73 

efficient dyes are usually rare, whereas dopants can serve as recombination centers for the 74 

photogenerated electrons and holes [21]. An alternative method is to combine photocatalysis with other 75 

processes that enhances the degradation efficiency. For example, Tokumura and coworkers developed 76 

the photo-Fenton reaction for the removal of VOCs which can efficiently prevent emission of any by-77 

products [29]. A compact scrubber and AOP process were combined to enhance the VOC oxidation 78 

[30]. The combination of AOPs and gas absorption is able to transform chlorine into chloride ions 79 

effectively at ambient temperature conditions [31].  80 

A number of reviews about photocatalytic oxidation of VOCs and formaldehyde from different 81 

aspects have been published in recent years. For example, Kabir et al. reviewed some representative 82 

techniques for controlling the indoor VOCs [32]. Peral et al. discussed the basic phenomena like oxygen 83 

and water vapor adsorption during gas-solid heterogeneous photocatalysis, and special interest was 84 

taken in describing the different photo-reactor configurations [33]. Lim et al. reviewed the development 85 

of photocatalytic materials and photoreactors which significantly affect the degradation efficiency of 86 

various major air pollutants [19]. Zaleska et al. reviewed the air pollutants removal mechanisms, key 87 

influencing factors on the reaction rate as well as photocatalysts preparation and immobilization 88 

techniques [34]. The review conducted by Mo et al. concentrates on the preparation and coating of 89 

various photocatalytic catalysts, different kinetic experiments and models, novel methods for measuring 90 

kinetic parameters, reaction pathways, intermediates generated, and an overview of various 91 

photocatalytic reactors and their models described in the literature [20]. Wang et al reviewed the current 92 

exposure level of VOCs in various indoor environment and state of art technology for photocatalytic 93 

oxidation of VOCs from indoor air [35]. Zhong and Haghighat carried out a critical review with aims 94 

to examine the state-of-the-art of photocatalysis technologies in the field of air purification and their 95 

application prospects [36]. Most recently, Hay et al. reviewed the viability of photocatalysis for air 96 

purification, especially the catalyst lifetime and intermediates formation [37].  97 

In this review, we aim to summarize and review the current progress of photocatalytic removal 98 

of VOCs and formaldehyde in indoor environment. Firstly, emission sources of indoor VOCs and 99 

formaldehyde and the traditional indoor air pollution control strategies are discussed. Secondly, 100 

influencing factors such as temperature, relative humidity, deactivation and reactivations of the 101 

photocatalyst are discussed and special interests are paid for the production of intermediates. Further 102 

applications of the photocatalytic technique to improve the indoor air quality are suggested.  103 
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2. VOCs and Formaldehyde in Indoor Environment 104 

2.1 Sources of VOCs and formaldehyde indoors 105 

VOCs is defined as organic compounds with the boiling point in the range of 50-260 °C at room 106 

temperature and atmospheric pressure [38]. This group is composed by a large amount of low molecular 107 

weight (MW) pollutants (such as aromatic-, fatty-, halogenated-, and oxygenated-hydrocarbon, terpene, 108 

aldehydes, ketones, and esters). Table 1 lists the typical VOCs presented in indoor air and their potential 109 

sources [17]. Formaldehyde is colorless, flammable and highly reactive at room temperature.  110 

Table1. Potential sources of indoor VOCs and formaldehyde  111 

VOCs and formaldehyde Possible Sources  

VOCs  

benzene furniture, wood-based materials, smoking 

toluene 
pesticide, flooring materials, insulating materials, wood-based materials, paints, 

adhesives, gasoline, combustion sources 

acetaldehyde wood-based materials, flooring materials, HVAC system 

paradichlorobenzene ceiling materials, wood-based materials, pesticide 

ethylbenzene furniture, paints, adhesives, gasoline, combustion sources 

methylene chloride flooring materials, furniture, HVAC system, coating and painting 

chloroethylene flooring materials, coating and painting, dry-cleaned clothes 

carbon tetrachloride coating and painting, industrial strength cleaners 

chloroform pesticide, glue 

naphthalene insulating materials, mixed materials, wall painting 

Other VOCs (e.g., esters and 

ketones)  

plastics, resins, plasticizers, solvents usage, flavors, perfumes, paints, disinfectant, 

adhesives 

  

formaldehyde 
pesticide, flooring materials, insulating materials, wood-based materials, machine, 

coating and painting 

  

 112 

The concentrations of common VOCs in a given indoor environment strongly related to the 113 

existences of emission sources and efficiencies of ventilations. In some cases, indoor VOCs levels are 114 

extremely high owing to low air exchange rates (AER) and poor ventilations [39]. For formaldehyde, 115 

the atmospheric background mixing ratio is generally in ppbv to sub-ppbv level, which is much lower 116 

than that indoors (e.g., ppmv level) such as workspaces and residential units [40]. VOCs and 117 

formaldehyde can be generated from indoor sources and can also penetrate from outdoors via air 118 

exchange. 119 

2.1.1 Indoor sources 120 

Building and decoration materials are the direct emission sources for many common VOCs. In 121 
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addition, the additives in solvent paint, wood preservative, plywood can release different degrees of 122 

VOCs at room temperature. Flooring can emit volatile aromatic such as toluene, benzene, and xylene 123 

[41]. Acetaldehyde is used as preservatives and food seasoning for fish products, which can be released 124 

from aniline, cosmetics, and plastic products as well. Newspapers, magazines, and prints that people 125 

regularly expose to are the source of C8 aromatic [42]. Furthermore, dry-cleaned clothes, chlorinated 126 

water, industrial-strength cleaners and room deodorants are the main source of chlorinated 127 

hydrocarbons. Environmental tobacco smoke is an important source for indoor VOCs quantified a total 128 

of 78 low MW chemical species, including aromatics, polycyclic aromatic hydrocarbons (PAHs), 129 

carbonyls, and quinones in the cigarette gas [43]. Human metabolism is also a source of indoor VOCs. 130 

Acetone, acetaldehyde, methanol and other aldehydes were detectable in the respiratory airs [44].  131 

Formaldehyde is a good solvent with strong adhesive properties, thus is used to strengthen the 132 

plate hardness. In addition, its insect-resistance and anticorrosive ability allow it to be applied in 133 

production of urea formaldehyde (UF) resins, paint and other materials. Primary non-industrial indoor 134 

sources of formaldehyde include decorative building materials and furniture bonded with UF resins, UF 135 

acid-cured finishes, and UF foam insulation (UFFI) such as wood-based materials, flooring and coatings 136 

[12,45]. The interior decorations of furniture and building materials (e.g., floor glue, plywood, emulsion 137 

paint, synthetic fiber, and adhesives) can emit a large quantity of formaldehyde. The emission from UF-138 

bonded materials has universality, potentiality and durability [46]. The volatiles mostly locate in the 139 

deep of the plank rather than on the surface, resulting in slow, continuous, and uninterrupted physically 140 

releasing. However, such potential would decrease over time.  141 

Heat treatment and combustion are also important sources of indoor formaldehyde. Traditional 142 

fuels such as biomass, coal, kerosene and liquid petroleum are used as an energy source for in-house 143 

warming, especially in most developing countries [47,48]. The heating has no doubt to emit a certain 144 

amount of formaldehyde and other air pollutants that elevate the toxic levels and create a polluted indoor 145 

environment. Residential cooking is considered as an anthropogenic source of indoor formaldehyde 146 

[49-51]. Daily necessities and customer products such as cosmetics, cleaning detergents, pesticides, 147 

chemical fiber textiles, books, and printing ink can release airborne formaldehyde.  148 

2.1.2 Outdoor sources 149 

Outdoor VOCs can be originated from anthropogenic or natural sources [52-56]. Incomplete 150 

combustion processes can generate volatile dissipative of any substances with low boiling point. 151 

Automobile exhaust, industrial discharges, and fuel combustion products contain many VOCs 152 

represented by alkanes, olefins, aromatic hydrocarbons. The pollutants from oil-fueled automotive 153 

include trace amount of rubber matrix, which consist of high numbers of alkanes and alkyl benzene. 154 

For the natural sources, biological VOCs (BVOCs) can be formed from secondary metabolic reactions 155 

of vegetation [57,58]. 156 

Formaldehyde is an intermediate of atmospheric photochemical oxidation and emission product 157 

from fossil fuel combustion. The primary sources of formaldehyde include both anthropogenic and 158 

natural sources as well. Natural formaldehyde can release from solid wood, forest fire and excretion of 159 

animals; however, their contributions to the atmospheric level are relatively small [59]. Anthropogenic 160 
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emissions include motor vehicles, chemical plants, industries, coal processing, artificial biomass 161 

combustion, and food barbecue. Among those, vehicle exhaust (VE) is the most critical pollution in 162 

urban areas. Even though alternative fuels and additives (i.e., green energies) and more advanced 163 

emission control technology have been discovered to reduce pollutant generation, the raise in amount 164 

of oxygenated VOCs from VE is still found with an increases of number of vehicles [60,61]. 165 

Formaldehyde can be formed secondarily from oxidation of many VOCs. Alkanes, alkenes and 166 

aromatics (e.g., benzene and toluene) are precursors for the photochemical processes [59] which react 167 

with atmospheric ozone (O3), NOx, hydroxyl radical (•OH) resulting in the formation of photochemical 168 

smog and production of formaldehyde or other reactive compounds. 169 

3. Traditional Removal Approaches 170 

The traditional technologies for VOCs removal include adsorption, membrane separation, liquid 171 

absorption, and catalytic combustion [62]. Many of these techniques have been widely applied in 172 

industries or commercial sectors, but few are being further developed or optimized [24,63-65]. Table 2 173 

summarizes details of current control techniques for VOCs removal. Newly-developed technologies 174 

have been demonstrated their removal efficiencies in particular testing airs or controlled environmental 175 

chambers. However, many are still limited on theoretical researches without practical applications. In 176 

addition, single-based removal system may not offer satisfactory purification results due to the 177 

complexity of VOCs and variations on their characteristics in real world. Combinations of the 178 

technologies are thus required to achieve the final goal, but both high costs and harsh conditions are 179 

limitations for their practical applications. It is a need to develop more economic, effective and 180 

environmental-friendly treatment methods.  181 
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Table 2. Summary on current control techniques for VOCs removal 182 

Techniques Principle By-product Advantage Disadvantage  

Botanical 

purification 

Air is passed through a planted 

soil or directly on the plants. 

The contaminants are then 

degraded by microorganisms 

and/or plants, the precise 

CO2, organic 

and amino 

acids 

low cost, no 

secondary pollution, 

beautifying the 

indoor environment 

The purification effect is bad for 

high concentration pollutants 

[28,66] 

catalytic 

combustion 

Combustion of VOCs at low 

temperature with the help of a 

catalyst. 

CO2, H2O Wide range of 

application coverage, 

high efficiency, no 

secondary pollution 

Not suitable for gas containing 

dust particles and droplets 

[63,67] 

Bio-filtration Bio-filtration is a process in 

which contaminated airs passed 

through a biological stuffing 

medium that supports many 

kinds microorganism that 

Biomass Little or no energy 

needs to be added in 

the form of heat or 

radiation to support 

this process 

The equipment is big, long 

residence time, easy to jam 

[68,69] 

Absorption Absorption is used to remove 

VOCs from gas streams by 

contacting the contaminated air 

with a liquid solvent. 

wastewater Product recovery can 

offset  

annual operating 

costs 

High demands on absorbent, 

complex process, high cost 

[24] 

Zeolite based 

adsorption 

Air pollutants are adsorbed onto 

zeolites, often as filtration post-

treatment 

Spent zeolite 

and collected 

organics 

Effective in more 

than 90% RH as the 

adsorbent might be 

too specific 

pollutant reemission [64] 

Activated 

carbon based 

adsorption 

VOCs are removed from the 

inlet air by physical adsorption 

onto the surface of the carbon 

Spent carbon 

and collected 

organics 

Recovery of 

compounds, which  

may offset annual 

operating costs 

they are flammable, difficult to 

regenerate for high boiling 

solvents, promote polymerization 

or oxidation of some solvents to 

toxic or insoluble compounds, 

[70] 

Membrane 

Separation 

Pollutants are passed through a 

membrane into another fluid by 

affinity separation. 

Exhausted 

membrane 

No further treatment, 

simple process, small 

energy consumption, 

no secondary 

pollution 

The stability of the membrane 

was poor 

[65] 
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 183 

Adsorption is the most traditional method for removal of airborne formaldehyde. Activated carbon, 184 

molecular sieve and silica gel are porous materials serving a large surface area media for physical and 185 

chemical adsorption. The common absorbents contain inorganic salts (e.g., ammonium and sulfurous) 186 

and are composed with amine groups such as urea and its derivatives, hydrazine, and amino-containing 187 

polymers [71-73]. Physical adsorption represents formaldehyde is trapped onto the materials such as 188 

zeolite, activated carbon, activated alumina and molecular sieve and porous clay ore without changing 189 

its original form. Chemical absorption works with high water solubility of formaldehyde, which is then 190 

reduced or decomposed by any oxidizing or completing agents in the collection solutions [16]. 191 

Persistence and stability are two concerns for the absorber of aldehyde material (ACM) (Shimizu [74]). 192 

The absorbed gases should be re-released subject to any change of indoor conditions such as 193 

temperature and RH. 194 

Catalytic oxidation technology with thermal treatment is another effective method for the VOCs 195 

and formaldehyde removal. Formaldehyde reacts with oxygen (O2) over the noble metals that produces 196 

CO2 and H2O vapor [40]. The cost on energy consumption is a critical concern as this has to be operated 197 

at high operation temperatures. For the plasma catalytic method, the molecules, particles, atoms and 198 

free radicals are excited to have high chemical activities for the decomposition of VOCs, but the 199 

reactions are difficult to be controlled in normal conditions and the reaction rates are usually slow [75]. 200 

Microbial degradation has been demonstrated its feasibility in removal of formaldehyde in both 201 

wastewater and exhaust gas from industries and laboratories. Currently this technique has not been 202 

widely applied for the indoor air cleaning. The composite of biological enzyme/activated carbon fiber 203 

were synthesized and loaded on an AC surface [76]. Acidity is the most important factor in selecting 204 

proper biological enzyme for the degradation. The experimental results showed that the removal rate of 205 

formaldehyde reached 80% when the loading time was 8 h. 206 

4. Removal of indoor VOCs and formaldehyde via photocatalytic oxidation  207 

4.1 Removal of VOCs by photocatalytic oxidation 208 

Photocatalytic oxidation (PCO) has been attracted more attention because of its unique 209 

characteristics on the removal of chemicals. In recent years, PCO is perceived as a technology to remove 210 

indoor VOCs. Titanium dioxide (TiO2) is known as the most extensive studied photocatalyst due to its 211 

excellent stability, high photo-activity, and suitable band gap structure. Low cost and non-toxicity are 212 

also the main advantages for its application.  213 

The basic mechanism of photocatalytic degradation is that organic would be oxidized to H2O, CO2 214 

or any inorganic harmless substances with •OH or superoxide (•O2
-) radicals, which are generated on 215 

the surface of photocatalyst (e.g., TiO2) under ultra-violet (UV) light irradiation [77]: 216 

TiO2  +   hν   →    hVB   +  e-
CB                              (1) 217 

H2O  +   h+
VB  →   •OH  +  H+                                               (2) 218 

O2  +   e-
CB   → •O2

-                                            (3) 219 
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In the heterogeneous reaction system, TiO2 is excited by the absorption of a photon with energy 220 

greater than or equivalent to the band gap energy of the semiconductor, resulting in the electron 221 

transition from the valence band to the conduction band. The radiation could consequently produce 222 

electrons and holes (e-/h+) in conduction band and valence band, respectively. Following by the 223 

irradiation, the electrons and holes can undergo redox reaction with the adsorbed reactants on the 224 

photocatalyst’s surface that leads to the formation of intermediates and products. The reaction series are 225 

co-called complete mineralization. Besides VOCs degradation, the reactions can be used as a function 226 

of disinfection and sterilization [78,79]. 227 

PCO of VOCs consists of a chain of stepwise reactions; that is, they take more than one elementary 228 

step to complete. Figure 1 shows a series of PCO reaction mechanism for o-xylene. Besides the final 229 

oxidized products, the steps also yield different oxidation states of intermediates such as aldehydes, 230 

ketones or organic acids [80]. These compounds can be qualified by real-time or offline monitoring and 231 

analytical methods such as gas chromatography/flame ionization detection (GC/FID), GC/mass 232 

spectrometry (GC/MS), high pressure liquid chromatography (HPLC), and Fourier-transform infrared 233 

spectroscopy (FTIR) [81,82]. Table 3 lists the intermediates formed in the PCO of VOCs (e.g., benzene, 234 

toluene and xylene) shown in the literature. For instance, the highly stable aromatic ring of toluene is 235 

usually intact while its active methyl group can be oxidized step-by-step to benzoic acid. The formation 236 

of the carbonyl group even causes the benzyl ring more inert because the conjugation effect reduces its 237 

electron density. The complete oxidation products such as CO2 and H2O would be generated from any 238 

of the intermediates until the benzyl ring is broken. However, if POC are conducted at room temperature, 239 

the active sites on the photocatalyst’s surface could be gradually occupied by irreversibly chemisorbed 240 

intermediates, which retard the reactions. For example, during the photocatalytic oxidation processes 241 

for toluene over TiO2 catalysts, it was found that the toluene photooxidation behavior was strongly 242 

affected by the formation and oxidation behavior of intermediate compounds[83]. The study carried out 243 

by Nakajima et al. showed that H2SO4 treatment of TiO2 surface provides higher photocatalytic removal 244 

efficiency on toluene which can be ascribed to the fast decomposition of intermediates by surface strong 245 

acid itself [84]. Moreover, the progresses of the research carried out into TiO2-based photocatalysts 246 

were summarized by several recent reviews [21,85]. 247 

Table 3. Summary on the intermediates formed in photocatalytic oxidation of typical 248 

indoor VOCs 249 

Target 

VOC 

Concentration

(ppm) 

Light  

source 

Main  

intermediates 

Chemical formula Analytical 

method 

Reference 

Benzene 3000-6000 4000W Xe 

lamp 

Benzaldehyde, 

benzoic acid 

- GC/MS [86] 

 614 White 

fluorescent 

lamp 

Phenol Hydroquinone, 1,4-

benzoquinone 

GC/MS [87] 

 - - Phenol, hydro- Malonic acid, GC/MS/FTIR [88] 
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quinone, benzoic 

acid 

benzoquinone 

Toluene 10 Black light 

lamp 

Benzaldehyde, 

benzoic acid 

benzyl alcohol FTIR [89] 

 

 50-800 365nm UV Acetone, 

acetaldehyde, 

formaldehyde 

Acrolein, butanone TDS-

GC/MS/FID, 

HPLC/UV/FTIR 

[90] 

 370 >400nm Benzaldehyde, 

benzoic acid 

- DRIFTS [91] 

Xylene 3000-6000 4000W Xe 

lamp 

Benzaldehyde, 

Methyl-

benzaldehydes 

2,5-Furandione, 1,3-

isobenzofurandione 

GC/MS [86] 

 25-75 UV o-Tolualdehyde, 

o-toluic acid, 

benzoate ion 

- FTIR [92] 

 250 

Anatase and rutile, two crystalline phases of TiO2, have been shown their feasibilities on PCO of 251 

indoor air pollutants under UV light irradiation. The band-gap energy of anatase and rutile are 3.23 and 252 

3.02 eV, respectively. Anatase has shown better performance in PCO processes than that of rutile 253 

because of its more favorable conduction band configuration and stable surface peroxide groups. In 254 

general, TiO2 is fixed on some substrate, such as hollow tubes, silica gel, beads, and woven fabric. 255 

These catalysts can be obtained using the methods such as electrochemical [93], plasma deposited [94], 256 

dip coating and sol-gel method [95].  257 

 258 
Figure 1. The PCO reaction mechanism for o-xylene. 259 

Table 4 summarizes potential photocatalysts used for removal of indoor VOCs. Different single or 260 
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combined photocatalysts have particular removal rates and efficiencies in PCO. Most TiO2-based 261 

catalysts have optimized performance on near-UV light region because of its large energy band gap 262 

between electron-hole pairs of ~3.2 eV. A light source at a wavelength (λ) of <387 nm is required to 263 

triumph over the gap, representing that the PCO can uptake ca. 3% from the sunlight only [96]. 264 

Therefore, a limited number of TiO2 catalysts can exhibit high degradation activity under a visible light. 265 

A lot of works have been thus done on the improvement of TiO2 photocatalytic efficiency, such as 266 

doping with nonmetals and metals and coupling with other supports. TiO2 doping with a nonmetal atom 267 

can enhance the photo-response in a practical application [97]. The nonmetal can substitute the oxygen 268 

on TiO2 lattice and lead to a band gap narrowing, resulting in activation at far-visible light region. The 269 

common photocatalysts are primarily metal oxides, which can be doped with elements such as carbon 270 

(C), nitrogen (N) or transition metal ions. For instance, the nitrogen-doped catalysts can be activated 271 

more efficiently because of higher energy level of the valence band of N2p than O2p. The fluorescence-272 

assisted TiO2-xNy can decompose pollutants such as acetaldehyde through gaseous phase photocatalytic 273 

reaction [98]. CaAl2O4: (Eu, Nd)/TiO2-xNy composite is able to store and release energies to 274 

continuously inspire the visible-light responsive to TiO2-xNy even in the darkness. Such property allows 275 

the fluorescence-assisted photocatalysts to function at night without supply of extra light sources.  276 

 277 
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Table 4.Summary on potential photocatalysts applied for indoor VOCs removal. 

Photocatalyst Preparation/coating method Configuration Compounds Light source ηremoval(%) Reference 

TiO2 Sol-gel F Acetone, toluene p-xylene UV lamp, 254nm 77-62 (3 L/min) [95] 

TiO2 Electrochemical F Acetaldehyde UV 99+ (110 min) [93] 

TiO2 Sol-gel F Toluene Black light 52 (3.6 L/min) [89] 

 

TiO2 Plasma deposited F m-xylene UV lamp 99+ (30 min) [94] 

TiO2‑xNx Calcination P Toluene Visible light 99+ (3000 min) [82] 

TiO2‑xNx Hydrothermal P Acetaldehyde Fluorescence - [98] 

C-TiO2 Hydrothermal P Toluene Visible light 60+ (120 min) [99] 

C-TiO2 Hydrothermal P Toluene Visible light 20 (120 min) [100] 

CNT-TiO2 Hydrothermal P Styrene UV-LED, 365nm 50 (20 mL/min) [101] 

Pt/TiO2 Photo-deposition P Benzene Black light, 300-420 100 (100 mL/min) [102] 

Ln3+-TiO2 Sol-gel P Benzene, toluene, ethylbenzene, o-

xylene 

UV，365nm 22-79 [103] 

Ce-TiO2 Sol-gel F Toluene Visible light 90 [104] 

Fe-TiO2 Sol-gel P p-xylene Visible light- LED 22 (5 min) [105] 

Fe-TiO2 Sol-gel P Toluene Visible light 99+ (120 min) [91] 

In(OH)3 Ultrasound radiation P Acetone, Benzene, Toluene UV lamp, 254nm 99+ (5 h) [106] 

β-Ga2O3 Chemical deposition P Benzene UV-lamp, 254nm 60 (20 mL/min) [107] 

Ag4V2O7/Ag3VO4 Hydrothermal P Benzene White fluorescent lamp 99+ (120 min) [87] 

Pt/WO3 Photo-deposition P DCA, 4-CP, TMA Visible light, >420 nm 99+ (3 h) [108] 

Pd/WO3 Calcination P Acetaldehyde, toluene Fluorescent/visible light 99+ (3 h) [26] 

Remarks: DCA: dichloroacetate; 4-CP: 4-chlorophenol; TMA: tetramethylammonium; P: powder; F: film
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   TiO2-Pt/TiO2 hybrid catalyst system serves a complete oxidation of benzene to CO2 at ambient 255 

temperature [102]. TiO2 after doped with Pt has an increase number of active sites, which convert 256 

intermediate form of carbon monoxide (CO) to be CO2. Pt/TiO2 is thus the most useful catalyst for the 257 

purification of VE gases containing benzene. Doping with  lanthanide ions can promote the formation 258 

of oxygen vacancies which have relatively high liquidity comparing with other oxygen species [109]. 259 

In particular, cerium (Ce) is a low cost photocatalyst that has the ability to migrate between Ce4+ and 260 

Ce3+ through oxidization and reduction reactions. Ce doped with TiO2 can decompose toluene under a 261 

visible light source. 262 

Rather than TiO2-based photocatalysts, other semiconductor can be also applied in the VOCs 263 

removal such as ZnO [110], ZnS [111], SnO2[112], In(OH)3 [106], and β-Ga2O3 [107]. Nano-sized 264 

porous In(OH)3 and porous Ga2O3 have high activity and long-term durability for photocatalytic 265 

decomposition of acetone, benzene, toluene and other aromatic derivatives under ambient conditions. 266 

4.2 Removal of Formaldehyde by photocatalytic oxidation 267 

Similar to the PCO for VOCs, formaldehyde priorly reacts with •OH, which are generated on the 268 

excited photocatalyst’s surface. They would form an intermediate of HCOOH which eventually is 269 

oxidized to CO2 and H2O vapor. The reaction mechanism is as following [113]:  270 
TiO2 hν h+

VB e-
CB

H2O h+
VB OH H+

+ +

+ +

O2 e-
CB O2

-+

(1)

(2)

(3)

HCHO OH+ CHO + H2O

CHO + O2
- HCO3

-

CHO OH+ HCOOH

(4)

(5)

CHO + O2
- HCO3

- +H+
HCOOH + HCHO HCOOH (6)

HCOOH
-H+

HCOO- h+

H+ +

CO2
-

O , OH h+,
CO2

CO2
- (7)

(8)
 271 

TiO2 and TiO2-based (i.e., metal-doped, nonmetal-doped and composites), other metal oxides (e.g., 272 

MnOx, Bi2O3, ZnO, PdO, and composites), and new-type photocatalysts are widely used for PCO of 273 

formaldehyde. Table 5 shows a summary of the common photocatalysts and their applications and 274 

efficiency in the formaldehyde decomposition. 275 

 276 

 277 
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Table 5. Summary on the PCO used for formaldehyde degradation. 278 

Catalyst Preparation method 
HCHO 

Concentration 

Light 

source 

Conversion 

efficiency 
References 

Mesoporous TiO2 
Evaporation-induced self-

assembly  
30ppm UV light 95.8% [114] 

Amorphous TiO2 film CVD method 50-55ppm UV light 80% [115] 

PEG modified TiO2 

film 
Sol-gel method 20ppm UV light 95% [116] 

TiO2 coating on 

polyester fiber 
Spray coating 24.6±2.8ppm UV light 90% [117] 

UV/ TiO2/O3 Sol-gel  18ppm UV light 79.4% [118] 

Ag/TiO2 Incipient wet impregnation 500ppm UV light 
Above 

95% 
[119] 

Pt@TiO2 Reverse micelle sol-gel 10ppm 
Visible 

light 
98.3% [120] 

Ce/TiO2 Sol-gel 1ppb UV light 
Above 

70% 
[121] 

Pd-TiO2 film Sol-gel dip coating 500ppb UV light 
Above 

95% 
[122] 

Acrylic-silicon/ 

nano-TiO2 
Emulsion blend  0.8ppm Vis light 83.4% [123] 

N-doped TiO2 

film 
Precipitation-peptization 0.24ppm Vis light 90% [124] 

AC loading TiO2 Microwave-assisted synthetic 30ppm UV light 58.68% [22] 

Pt@SnO2 Sol-gel method — Vis light 93.2% [125] 

α-Bi2O3 
Calcination of hydrothermally 

prepared (BiO)2CO3 
100ppm Vis light 62.5% [25] 

Nano-ZnO Mixing-calcination 2.5-25ppb UV light 73% [126] 

Zr0.08Ti0.92O2 Sol-gel method 0.08ppb 
UV-vis 

light 
92% [127] 

Zn2SnO4 Hydrothermal method 2ppm 
UV-vis 

light 
70% [128] 

4.3 Influence factors  279 

Photocatalytic reaction rate, additional with the reaction kinetic and adsorption coefficients, are 280 

direct tools to evaluate the efficiency of a photocatalyst in removal of VOCs. Table 6 shows kinetic 281 

parameters and PCO conversion efficiency for the common VOCs. There are critical factors such as 282 

light source and intensity, pollutant concentration, RH, temperature, and deactivation and reactivation 283 

can control the photocatalytic reaction rate. In order to study the PCO processes, many kinetic 284 
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experiments for removal of common pollutants (e.g., benzene, toluene, xylene, and formaldehyde) have 285 

been thus conducted in optimal reactors. Here we summarize and review these factors.  286 

Table 6. Kinetic parameters and PCO conversion efficiency (%) for the common VOCs 287 

 288 

Pollutants 

Reactor design 

Initial reaction conditions 

Deactivation Reference 

[VOC]gas 

(ppm) 

PW(nm)/I 

(mW·cm-2) 

RH 

(%) 

T 

(°C) 
RT Photocatalyst 

Styrene CR CNT-TiO2 25±1.5 365/70 - - Y [101] 

Benzene CR Pt/TiO2 80 300-420/- 65 Ambient n.r. [102] 

CR In(OH)3 920 245/- - 25 n.r. [106] 

Acetone CR In(OH)3 420 245/- - 30±1 n.r. [106] 

Toluene CR TiO2 10 >300/0.7 0-40 Ambient Y [89] 

CR TiO2 17-35 365/2.34 47 25 n.r. [106] 

CR P25 50-800 365/10±1 0-50 25 n.r. [90,106] 

CR Ce-TiO2 0.15-0.6 Visible/- <3-75 42 n.r. [104] 

CR Fe-TiO2 370 >400/- 60 25 Y+N [91] 

CR Ln3+-TiO2 23±2 365/0.75 - - n.r. [103] 

CR In(OH)3 1220 245/- - 25 n.r. [106] 

CR TiO2 fibers 200 365/9 20-60 - n.r. [129] 

Xylene CR P25 25-75 UV/1.5 30-90 - Y [92] 

Remarks:  289 

CR: continuous reactor; BR: batch reactor.  290 

[VOC] gas= VOC gas-phase concentration; I = light intensity; RH= relative humidity; T = temperature. 291 

Y: catalyst deactivation observed; N: catalyst deactivation not observed; Y+N: catalyst partial deactivation and 292 

can be regenerated completely; n.r.: reference includes no data on catalyst deactivation,  293 

-: reference includes no data on light intensity. 294 

Light source and intensity. The electron-hole pairs of a photocatalyst must be firstly excited for 295 

the following VOCs degradation. The common catalysts (e.g., TiO2) usually require an UV wavelength 296 

equivalent energy source for the excitation. Medium pressure mercury lamp, Xenon lamp, and UV light 297 

are common light sources for PCO. The light intensity is usually represented by units of light-irradiation 298 

(energy per unit area) or photon flux on the catalyst’s surface. Theoretically, the reaction rate of PCO 299 

is proportional with the light intensity supply. The reaction rate of PCO is regulated by the first order 300 

of consumption rate of electron hole pairs and a half order of their recombination rate [130]. Thus there 301 

is no doubt that the light intensity can directly control the first-order of reaction [95]. In addition, the 302 

internal structures of photocatalysts can affect the adsorption rate of the photons and consequently 303 

impact on the conversion rate [131]. Bahnemann and Okamoto [132] investigated the relationships 304 

between UV light intensity and photocatalytic reaction rate with TiO2. A linear correlation was found 305 

in the low intensity range whereas the degradation rate is proportional to square root of the light intensity 306 
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under the moderate intensities. When light intensity is greater than 6 x 10-5 Einstein L-1 S-1, the 307 

VOC degradation rate is not further enhanced subject to any changes.  308 

As UV light is harmful to human and potentially leads to produce secondary pollutants 309 

(e.g., more strong oxidizing substances) in indoor air, more attentions are drawn to applying 310 

visible light stimulating catalytic reaction for the removal of VOCs. However, the influences 311 

of light intensity are seldom studied with visible light sources. The formaldehyde removal rates 312 

with N-doped TiO2 photocatalyst were enhanced linearly form 25.5% to 59.6%, and stabilized 313 

thereafter, when the intensity increased to 30,000 lux with an initial concentration of 0.98 314 

mg/m3 [133]. 315 

Pollutant concentration. The concentration levels of pollutants can influence the 316 

photocatalytic performance in terms of the reaction rate. In the PCO process, the mass flux 317 

between the surface of photocatalyst and inlet can be accounted by the convective mass transfer 318 

[134]:  319 

       NA= kA*∆CA                                                                                (9) 320 

Where NA is mass flux, kA is convective mass transfer coefficient and ∆CA is the concentration 321 

difference of transfer substance between the interface and the inlet. Eventually, the pollutant 322 

concentration over the photocatalyst’s surface varies from that in the inlet; however, it is 323 

difficult to accurately monitor the surface concentration by any means of measurement 324 

techniques. As a result, the use of inlet concentration for the computation of kinetic parameters 325 

may contain different degrees of errors. In order to decrease the concentration disparities, it is 326 

necessary to increase the airflow rate for improving the convective mass transfer [135].  327 

Pollutant concentration (C) and photocatalytic reaction rate (r) are the two kinetic 328 

parameters for reaction model computation. The Langmuir-Hinshelwood (L-H) model has been 329 

widely applied to establish pertinence between C and r in the PCO process for many VOCs 330 

such as acetone, benzene, toluene, and xylene [136,137]. In general, the degradation rate 331 

decreases while the pollutant concentration increases [90,95]. However, only few investigations 332 

on the photocatalytic kinetics for indoor VOCs are reported. Among those, most have 333 

conducted the tests at an extremely high concentration (e.g., ppmv level). The demonstration 334 

concentration for a VOC would even cause instant headache, irritation, and discomfort to 335 

human [138]. The results could not reflect the realistic situations in most indoor environments 336 

(i.e., pptv to sub-ppbv level). Ce-doped TiO2 had a decrease in degradation efficiency while the 337 

formaldehyde levels increased from 0.1 to 0.5 mg/m3 [121]. In addition, in a concentration range 338 

of 0.1-1.0 mg/m3, the degradation efficiency of formaldehyde was up to 80.8% with 339 

photocatalyst from 3M company, but shapely reduced to 52.9% when the concentration raised 340 

to 2.0 mg/m3 [139].  341 

Relative Humidity. Hydroxyl groups can be generated while water molecules adsorbed on 342 

the photocatalyst during the PCO processes, which can be captured by photo- generated charge 343 

carriers to produce reactive radicals (e.g., •OH) to further oxidize the indoor organic pollutants. 344 

Therefore, water vapor either from indoor air or generated from the mixed reactions plays a 345 
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significant role in the photo-degradation [102]. In the absence of water vapor, the photo-346 

degradation of VOCs (e.g., toluene) is seriously retarded since the mineralization could not be 347 

completely occurred. At the initial stage of photocatalytic reaction, hydroxyl groups were 348 

expended due to the reactions between water vapor and organics on the photocatalyst’s surfaces. 349 

However, the presence of water vapor would lead to electron-hole recombination [140]. There 350 

is also an adsorption competition between water and organics when RH is excessive. The water 351 

molecules can occupy the active sites of the photocatalyst surfaces for reduction of the VOCs 352 

degradation rate and suppression of photocatalytic activity. A typical breakthrough curve was 353 

obtained to demonstrate the competitive adsorption of water and toluene in the TiO2 354 

photocatalytic reactions [89]. The result indicated that the photocatalyst is more sensitive to RH 355 

at a low hydrophobic condition. The indoor RH is usually regulated by ventilations (e.g., air-356 

conditioning) or humidifiers, thus the competitive adsorption between water and trace 357 

contaminants has strong impact on the oxidation rates [135]. 358 

RH is also the key factor for formaldehyde degradation, which has been demonstrated with 359 

the photocatalytic performances of ZrxTi1-xO2 at different RHs of 50±5%, 65±5%, 85±5%, 360 

respectively [127]. The work reported that the activity is the highest at RH of 50±5%, 361 

representing that the photocatalytic reaction can be suppressed at humid environments. Similar 362 

observations were found for TiO2-C coated and TiO2-CN coated photocatalysts at a RH range 363 

of 20-90% [141]. The effect of RH on the degradation is negligible at a formaldehyde 364 

concentration of 3.3±0.3 ppmv; while at a higher concentration level (8.6±0.5 ppmv), the 365 

degradation efficiency significantly dropped at a RH of 90%. It is necessary to note that the 366 

impacts of water vapor on the removal efficiency for VOCs and formaldehyde were 367 

inconsistent for different photocatalysts. For this reason, an optimized working RH must be 368 

investigated when different systems are applied. 369 

Deactivation and reactivation. Lifetime of a photocatalyst is an important parameter for 370 

the real application in removal of indoor pollutants. This should include the consideration of 371 

deactivation, regeneration, reactivation, or replacement. The gas-solid photocatalytic activity 372 

decreases with time while the number of effective active sites on the catalyst surface decreases 373 

at the same time. Deactivation thus occurs due to the accumulation of such partially-oxidized 374 

intermediates which occupied the active sites on the photocatalyst’s surface. Many kinetic 375 

studies indicate that the adsorption of poisonous intermediates during the initial stage of the 376 

photocatalytic reactions is almost irreversible. The initial oxidation rate is proportional to the 377 

effective surface area of catalyst. For instance, acetic acid and formic acid are the two main 378 

detectable intermediates formed in the photocatalytic degradation of acetaldehyde by TiO2. 379 

Even though trace amounts of these intermediates could possibly discharge into the airs, these 380 

polar organic compounds have a stronger affinity to be accumulated on the photocatalyst’s 381 

surface until they can be decomposed by further steps of PCO. In some extent, a complete 382 

deactivation of the photocatalyst occurred after 20 consecutive PCO reactions due to the fully 383 

occupation of the active sites by the intermediates [92]. Mendez-Roman investigated the 384 



 

 
18 

 

relationship between the formation of surface species and catalyst deactivation during the 385 

photocatalytic oxidation of toluene, and their results showed that the accumulation of benzoic 386 

acid on the surface resulting in the catalyst deactivation[142]. Recovery of photocatalytic 387 

activity requires a regeneration technique. The adsorbed polar intermediates such as 388 

benzaldehyde and benzoic acid can be removed completely with a heat treatment at 653 K for 389 

3 h [100]. However, such reactivation of the photocatalysts is a practically difficult since it 390 

consumes high energy or requires work with a furnace. 391 

Other potential factors. Rather than the above, the loading amount of noble metal, content 392 

of the photocatalyst, and gas flow rate can also affect the photocatalytic activity. These multiple 393 

parameters can either advance or suppress the PCO subject to the kind of photocatalysts applied 394 

for the VOCs removal.  395 

5. Summary and Outlook 396 

VOCs are omnipresent but can greatly aggravate indoor air quality. Formaldehyde is 397 

highly concerned due to its carcinogenicity and universality. There is a variety of indoor 398 

pollution sources such as wood-based furniture and flooring material for both of VOCs and 399 

formaldehyde. A long time exposure to indoor toxics can lead to health impacts such as SBS 400 

and cancer. 401 

Photocatalysis is considered as one of the most promising technologies for eliminating 402 

VOCs due to its high efficiency and stability. However, traditional photocatalytic materials such 403 

as TiO2 can only response to UV irradiation, limiting the light utilization efficiency. 404 

Development of new single or photocatalytic composite materials which can be irrigated with 405 

conventional visible or solar light is thus a need. Currently most studies demonstrated their 406 

VOCs removal efficiency in a high concentration level (e.g., ppmv). More on-site 407 

demonstration should be conducted in order to prove the efficiency in removal of indoor VOCs 408 

and formaldehyde in realistic environments (e.g., residential and workspaces).  409 

Different oxidation states of intermediates can be produced in the PCO reaction 410 

mechanism. These organics can temporarily or permanently occupy the active sites on the 411 

photocatalyst’s surface, leading to suppression or termination of the reaction kinetics. Efficient 412 

removal of these intermediates is necessary as they are even more toxic than the parent VOCs 413 

and harmful to health. It is especially critical if they can be discharged into the indoor airs in 414 

practical application. More advanced approaches for re-activation and regeneration of 415 

photocatalyst are also essential to extend its lifetime for serving a long-term VOCs degradation. 416 
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