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Visibility impairment has become an important environmental issue receiving great attention
from both the scientific community and the public. Long-term meteorological data from Baoji,
China, were collected to investigate the trend in visibility change from 1980 to 2012. The
33-year average visual range is 12.0 km. The best 20% of the visibility observations in a
calendar year shows a general decreasing trend from 1994 onwards, while the worst 20%
exhibits a slight increasing trend from 1997 onwards. These results suggest the progressive
degradation of air quality in Baoji in recent years. Intensive PM2.5 measurements were
conducted from March 2012 to February 2013 to determine the causes of visibility
impairment. An analysis based on IMPROVE equation reveals that PM2.5 organic matter
(OM) contributes to 34.2% of the light extinction coefficient (bext) on an annual basis, followed
by (NH4)2SO4 (30.0%), NH4NO3 (20.1%), elemental carbon (9.2%) and soil dust (6.5%). The
largest contributor to bext for the Worst 20% group is (NH4)2SO4, and the contribution of
NH4NO3 for the Worst 20% group increases by a factor of ~3 compared with the Best 20%
group. Source apportionment using a positive matrix factorization receptor model indicates
that secondary sulfate is the main source of PM2.5 (23.0%), followed by fugitive dust (20.5%),
coal combustion (19.9%), secondary nitrate (15.5%), biomass burning (14.3%) and motor
vehicle emissions (6.8%). These quantitative results could be useful for policy makers to take
effective measures to control the haze pollution in Baoji. Further, the results also are likely to
be relevant for other mid-sized cities in China.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Visibility impairment in urban environments has attracted
considerable attention for scientific community worldwide
(Chen and Xie, 2012;Wang et al., 2009; Zhang et al., 2010) and
hemistry and Physics,
emy of Sciences, Xi'an
2 0456.
is also a concern for the public, especially those living in urban
areas. Visibility degradation is more than an aesthetic issue; in
fact, the atmospheric constituents responsible for the problem
also affect the human and ecosystem health (Hyslop, 2009).
Although natural emissions can be involved, emissions of
anthropogenic pollutants are the major cause for degrading
atmospheric visibility. Therefore, visibility has commonly been
used as an indicator of air quality in urban areas (Watson,
2002). Previous studies (Huang et al., 2009; Thach et al., 2010)
have used visibility degradation as a proxy for human exposure
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to study the correlation between air quality and human
mortality.

The degradation of visibility is a complicated issue
because many factors can affect it simultaneously, including
the concentrations, size distributions and composition of
aerosol particles, which in turn are subject to the influence of
different meteorological conditions (Cao et al., 2012a; Liu et
al., 2013; Wang et al., 2013; Tao et al., 2014). Previous studies
have shown that elevated concentrations of fine particles are
the main cause of visibility impairment, mainly because fine
particles scatter visible light more efficiently compared to
coarse particles (Deng et al., 2008; Watson, 2002; Yang et al.,
2007). In terms of the aerosol composition, sulfate, nitrate,
organics and black carbon are the major species that impair
visibility (Cao et al., 2012a; Wang et al., 2013; Yuan et al.,
2006). Meteorological factors, especially relative humidity,
wind speed and the depth of the planetary boundary layer
(PBL) influence the concentrations and properties of aerosol
particles and thus visibility (Wen and Yeh, 2010; Wu et al.,
2005). In addition to the impacts of human activities, several
natural phenomena, especially dust storms and fog, can also
cause low visibility events (Kim et al., 2001; van Oldenborgh
et al., 2010).

Even though particulate pollution has become one of the
primary environmental concerns in China, most visibility
studies have focused on provincial capitals or developed
regions in eastern China (i.e., Che et al., 2009; Tao et al., 2009;
Wang et al., 2013). In contrast, there has been relatively little
attention paid to the problem in mid-sized cities. The
measurement site in our study, Baoji (33°35′–35°06′N,
106°18′–108°03′E), is the second largest city of Shaanxi
Province, with a population of over 0.75 million in the
downtown area. Baoji is situated in north-central China on
the northern bank of the Wei River (Fig. 1). Given that over
40% of the cities in China have a population and gross
Sampling site

Fig. 1. Location of the Ba
domestic product in size similar to Baoji (Wu, 2004), our
results may have important implications for air pollution in
mid-sized Chinese cities.

To better understand the visibility impairment problem in
China, it is of particularly advantage to study the past and
present visibility. Here, a long-term data set for visual range
(VR) was used to investigate the changes in visibility in Baoji
from 1980 to 2012. An intensive PM2.5measurement campaign
was undertaken to investigate the potential causes of visibility
impairment, and receptor modeling was used for source
assessments.

2. Data and analysis methods

To investigate the long-term visibility trends in Baoji,
China, daily records of VR as well as wind speed and
relative humidity (RH) covering the period from 1980 to
2012 were obtained from the Baoji Meteorological Bureau.
Well-trained observers measured the VR using reference
objects, such as buildings and mountains, in different
directions at known distances from the observer (Che et
al., 2007). Daily optical light extinction coefficients (bext)
are estimated from the well-known Koschmieder equation
(Koschmieder, 1924):

bext ¼ 3:912=VR ð1Þ

To characterize the impact of PM2.5 on visibility impairment,
an intensive sampling campaign was conducted on the rooftop
(~10 m above ground level) of the Baoji Environmental
Monitoring Station (see Fig. 1) from March 2012 to February
2013. Hourly PM2.5 loadings were measured with an automatic
Environmental Beta Attenuation Monitor (E-BAM, Met One
Instruments, Inc., Grants Pass, OR, USA). Meanwhile, 24-hour
integrated PM2.5 samples were collected every 6 days from
oji sampling site.



Fig. 2. The 33-year trend of annual average visual range as well as the Best
20%, 50% and the Worst 20% of the annual visual range observed from 1980
to 2012 in Baoji, China.
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10 a.m. to 10 a.m. the next day (local standard time) using two
battery-powered mini-volume samplers (Airmetrics, Oregon,
USA), which operated at a flow rate of 5 L min−1.

One sampler was equipped with 47-mm quartz-fiber filters
(QM/A; Whatman, Middlesex, UK) for water-soluble inorganic
ions, organic carbon (OC) and elemental carbon (EC) analyses,
while the other sampler used 47 mm Teflon® filters
(Whatman Limited, Maidstone, UK) for elemental analysis.
After sampling, the filter samples were stored in refrigerator at
~4 °C until chemical analysis to prevent evaporation of volatile
components. Field blank filters were collected to account for
the positive artifacts due to the condensation of gas-phase
organic components onto the filter during and/or after
sampling. A total of 59 pairs of PM2.5 samples were collected.
For discussion purposes, spring is defined here asMarch toMay
(15 pairs), summer June to August (15 pairs), autumn
September to November (14 pairs) and winter December to
the following February (15 pairs).

Seven elements (K, Ti, Mn, Fe, As, Br and Pb) were
determined by energy-dispersive X-ray fluorescence (ED-XRF)
spectrometry (Epsilon 5 ED-XRF, PANalytical B.V., Netherlands).
The Epsilon 5 spectrometer uses a three-dimensional polarizing
geometry with 11 secondary targets (i.e., CeO2, CsI, Ag, Mo, Zr,
KBr, Ge, Zn, Fe, Ti and Al) and one barkla target (Al2O3). This
configuration provides a good signal-to-background ratio and
low detection limits. The X-ray source is a side window X-ray
tube with a gadolinium anode, operated at an accelerating
voltage of 25–100 kV and a current of 0.5–24 mA (maximum
power: 600 W). The characteristic X-ray radiation was
detected using a liquid nitrogen-cooled, solid-state, germanium,
PANalytical (PAN 32) detector.

Water-soluble inorganic ions were determined with a
Dionex 600 ion chromatograph (Dionex Corp, Sunnyvale,
CA). Cation (Na+, K+, Mg2+, Ca2+ and NH4

+) concentrations
were separated using a CS12A column (Dionex Corp.) and
20 mM methane sulfonic acid as the eluent. Anions (SO4

2−,
NO3

− and Cl−) were separated with an ASII-HC column
(Dionex Corp.) and an eluent of 20 mM KOH. The limits of
detection were less than 0.05 mg L−1 for both anions and
cations. Standard Reference Materials produced by the National
Research Center for Certified Reference Materials (China) were
analyzed for quality control and assurance purposes. Blank
values were subtracted from sample concentrations.

Carbonaceous species (OC and EC) were analyzed by a DRI
(Model 2001) Thermal/Optical Carbon Analyzer (Atmoslytic
Inc., Calabasa, CA, USA). Themethod produces data for (A) four
OC fractions (OC1, OC2, OC3 and OC4 in a helium atmosphere
at 140 °C, 280 °C, 480 °C and 580 °C, respectively); (B) a
pyrolyzed carbon fraction (OP, determined when reflected
laser light attained its original intensity after oxygenwas added
to the combustion atmosphere); and (C) three EC fractions
(EC1, EC2 and EC3 in a 2% oxygen/98 % helium atmosphere at
580 °C, 740 °C and 840 °C, respectively). The IMPROVE A
protocol defines OC as OC1 + OC2 + OC3 + OC4 + OP and
EC as EC1 + EC2 + EC3 − OP. The analyzer was calibrated
with known quantities of CH4 daily. Replicate analyses were
performed for one sample in every ten samples. Field blank
samples were also analyzed, and the sample results were
corrected for the field blanks. More detailed descriptions of
Quality Assurance/Quality Control (QA/QC) procedures can be
found in Cao et al. (2003).
3. Results and discussion

3.1. Long-term trend in visibility

The mean and median VRs in Baoji are relatively stable
from 1980 to 2012 (Fig. 2). The 33-year average VR is
12.0 km, with the maximum annual average occurring in
1995 (13.9 km) and the minimum in 1985 (10.3 km). The
33-year average VR in Baoji is higher than that at Chinese
megacities Guangzhou (10.8 km), Beijing (10.7 km), Shanghai
(8.6 km) (Chang et al., 2009) or Chengdu (8.5 km) (Wang et
al., 2013), but lower than that at Nanjing (16.5 km) and
Hangzhou (15.1 km) (Gao et al., 2011).

The 50th percentile (50%) of the observations in a
calendar year, the 20th percentile with the lowest VRs
(Worst 20%) and the 20th percentile with the highest VRs
(Best 20%) are used here as indicators of “median visibility,”
“poor visibility” and “good visibility,” respectively, based on
the U.S. Regional Haze Rules (Environmental Protection
Agency, 1999). As shown in Fig. 2, the Worst 20%, 50% and
the Best 20% exhibit similar fluctuations during the study
period, with 33-year average values of 4.2, 12.0 and 20.1 km,
respectively. For the Worst 20% group, the highest VR is
6.6 km in 2012, and the lowest is 3.1 km in 1997. For the 50%
VR group, the highest value is 15.0 km in 2005, and the
lowest value is 10.0 km in 1985. For the Best 20% group, the
highest VR is 23.2 km in 1989, and the lowest is 16.9 km in
2011. It should be noted that although there is some
fluctuation for certain years, the Best 20% of the annual
observations show a general decreasing trend of ~2.0 km/
decade from 1994 onwards, while the Worst 20% exhibits a
slight increasing tendency of ~1.0 km/decade from 1997
onwards. The fluctuation could be associated with the
combination effects of PM2.5 and meteorological conditions.

Fig. 3a and b show the correlations of the yearly averaged
VR with wind speed and RH, respectively. The correlation
coefficients show that visual range increase with wind
speed, most likely due to enhanced dilution of air pollutants



Fig. 3. Scatter plots of the annual average visual ranges versus (a) wind speed and (b) relative humidity from 1980 to 2012. Vertical and horizontal error bars
represent the standard deviations. Solid lines are the linear regression curves.

91S. Xiao et al. / Atmospheric Research 149 (2014) 88–95
under high wind speeds. In contrast, the VR decrease with
the increase of RH, most likely because higher RH promotes
the growth of hygroscopic particles (e.g., sulfates and
nitrates) into large sizes that scatter more light (Watson,
2002).
3.2. Correlation of visual range with PM2.5 mass loadings

Fig. 4 shows the daily VR as a function of PM2.5 mass
concentration during the 1-year intensive study period from
March 2012 to February 2013. The data points are color
coded for RH and size coded for wind speed. It can be seen
that the VR is exponentially related to PM2.5 mass, with a
correlation coefficient of 0.73. The China Meteorological
Administration (2010) defines haze based on two
Fig. 4. Visual range as a function of PM2.5 mass concentration in Baoji from
March 2012 to February 2013. Data points are color coded for relative
humidity (RH) and size coded for wind speed. The exponential curve is fitted
between visual range and PM2.5 mass.
meteorological variables: (i) the atmospheric horizontal
visibility is less than 10 km, and (ii) the RH is lower than 80%.
In terms of the exponential fit, the threshold of PM2.5 mass
concentration for the occurrence of haze at Baoji is equivalent to
~112 μg m−3. In other words, when PM2.5 mass concentra-
tions are above this threshold value, the visibility in Baoji is
typically low. Such analysis therefore provides a scientifi-
cally derived PM2.5 standard that the local government may
use to improve the visibility. It should be noted that this
threshold value is 30% higher than the value of 88 μg m−3 in
Xi'an (Cao et al., 2012a), but comparable to the value of
110 μg m−3 in Beijing (Zhao et al., 2011). Differences in
these local threshold values could be attributed to the
different chemical composition of PM2.5 in these three cities.
Fig. 4 also shows that in general the VR is negatively
correlated with RH and positively correlated with the wind
speeds during the 2012–2013 intensive campaign period,
consistent with the conclusion made from the long-term
observations (1980–2012, see Fig. 3).

The correlation matrix in Table 1 illustrates that the VR is
negatively correlated with the concentrations of secondary
inorganic ions, including SO4

2− (r = −0.68), NO3
− (r = −0.6)

and NH4
+ (r = −0.7). Although the VR is also negatively

related to Cl−, Na+, K+, Ca2+, OC and EC, the correlation
coefficients are much lower, in the range of −0.5 to −0.4. In
addition, NH4

+ is strongly correlatedwith SO4
2− (0.94) andNO3

−

(0.96), suggesting that these threemajor ions are in the formof
ammonium sulfate and ammonium nitrate. In urban air, the
secondary inorganic aerosols are formed through the oxidation
of their precursors SO2 andNOxwhich aremainly emitted from
coal burning and vehicle exhausts. Thus, it's important to
control emissions from these two sources.

3.3. Influences of chemical components on light extinction
coefficients

The degradation of visibility occurs as a result of the
scattering and absorption of light by particles and gases in the

image of Fig.�3
image of Fig.�4


Fig. 5. Scatter plots of the chemical light extinction coefficient (bext) based
on the IMPROVE equation versus optical light extinction coefficient (bext)
estimated from the Koschmieder equation.
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atmosphere. In this study, aerosol light extinction coefficient
(bext in Mm−1) is calculated from the IMPROVE equation:

bext ¼ 3� f RHð Þ � ammonium sulfate½ � þ 3� f RHð Þ
� ammonium nitrate½ � þ 4� organic matter½ � þ 1

� soil dust½ � þ 10� EC½ � þ 1:7� f RHð Þ � sea salt½ � þ 0:6

� coarse mass½ � þ Rayleigh Scattering site specificð Þ ð2Þ

where the quantities in brackets [X] represent the concentra-
tions of the PM2.5 components in μgm−3. A RHgrowth function
f(RH) indicates the extent of scattering efficiencies increase for
sulfate and nitrate as they absorb liquid water. The f(RH) curve
fromMalm andDay (2001) is used for this study. The IMPROVE
equation has been proven to be a useful tool for assessing the
impact of specific types of aerosols on visibility (e.g., Kim et al.,
2006; Tao et al., 2009).

Based on the ion-balance calculation (not shown), the
SO4

2− and NO3
− can be completely neutralized by NH4

+ to
form (NH4)2SO4 and NH4NO3. Thus, the concentrations of
(NH4)2SO4 and NH4NO3 are calculated by multiplying [SO4

2−]
and [NO3

−] by a factor of 1.40 and 1.29, respectively. The
organic matter (OM) and soil dust fractions are estimated
from 1.6 × [OC] (Turpin and Lim, 2001) and [Fe]/0.035
(Taylor and McLennan, 1985), respectively. As Baoji is an
inland city, the concentration of sea salt could be negligible
compared to the major composition and was set as zero for
simplified purpose. Moreover, the contributions of coarse
mass and Rayleigh scattering to bext have been found to be
negligible (Cao et al., 2012a; Cheung et al., 2005), and
therefore, these factors also are excluded from the analysis.

As shown in Fig. 5, the reconstructed chemical bext
correlates strongly with the optical bext estimated from the
Koschmieder equation (Koschmieder, 1924). The slope of a
least-squares linear regression is 1.09 and r = 0.78. These
results suggest that the IMPROVE algorithm can provide
reasonable estimates for chemical bext in Baoji under ambient
conditions. Nevertheless, at high bext range, the discrepancies
between optical bext and chemical bext are larger, which
could be associated with the larger uncertainties from the
naked-eye observations of lower VR although the observers
are well-trained. The uncertainty in f(RH) may also lead to
the deviation in estimating the chemical bext. Table 2 shows
that the annual average (±standard deviation) chemical bext
is 494 ± 314.8 Mm−1, with the highest value occurring in
Table 1
Correlations between PM2.5 chemical components and visual range (VR) (r N 0.8 ar

VR SO4
2− NO3

− Cl− NH

VR 1
SO4

2− −0.68 1
NO3

− −0.60 0.84 1
Cl− −0.45 0.42 0.62 1
NH4

+ −0.70 0.94 0.96 0.61 1
Na+ −0.40 0.42 0.37 0.54 0.4
K+ −0.50 0.75 0.88 0.67 0.8
Ca2+ −0.40 0.20 0.23 0.43 0.2
OC −0.45 0.45 0.66 0.88 0.6
EC −0.43 0.45 0.59 0.81 0.6

OC: organic carbon; EC: elemental carbon.
winter (754 Mm−1) followed by autumn (417 Mm−1),
summer (402 Mm−1) and spring (397 Mm−1). The annual
average chemical bext at Baoji is higher thanwhat is measured at
Jinan (292 Mm−1, Yang et al., 2007) or Guangzhou (367 Mm−1,
Jung et al., 2009), but much lower than that measured at Xi'an
(912 Mm−1, Cao et al., 2012a) and Chengdu (900 Mm−1, Wang
et al., 2013).

On average, OM is the largest contributor to the light
extinction coefficient, accounting for 34.2% of chemical bext.
The fractional contribution of OM to bext is the highest in
winter (41.5%), followed by autumn (35.2%), spring (35.1%)
and summer (18.8%). The second most important contributor
to bext is (NH4)2SO4 with an annual average of 30.0%. The
highest contribution (48.7%) from (NH4)2SO4 to bext is found
in summer, presumably due to the high concentrations of
SO4

2− and high RH compared with the other seasons. The
influence of NH4NO3 is also important throughout the year,
with seasonal contributions of 16.7–21.8%. Particle light
absorption by EC contributes to 9.2% of bext, and the
remaining 6.5% of bext is attributed to soil dust.

Previous studies have shown that the relative influences
of chemical species on bext vary with locations. For urban
e shown underlined and in bold type).

4
+ Na+ K+ Ca2+ OC EC

3 1
6 0.34 1
5 0.44 0.16 1
6 0.52 0.65 0.46 1
1 0.47 0.58 0.40 0.79 1

image of Fig.�5


Table 2
Light extinction (bext in Mm−1) budgets for PM2.5 components by season.

Season (NH4)2SO4 NH4NO3 OM EC Soil dust Total bext

Spring 109.3 ± 104.2 66.1 ± 74.2 139.2 ± 56.8 34.8 ± 16.2 47.2 ± 44.1 396.6 ± 208.3
% of bext 27.6 16.7 35.1 8.8 11.9
Summer 195.8 ± 176.3 80.9 ± 95.2 75.5 ± 11.2 32.5 ± 11.7 17.1 ± 4.1 401.9 ± 287.6
% of bext 48.7 20.1 18.8 8.1 4.2
Autumn 103.1 ± 73.6 83.7 ± 67.7 146.6 ± 86.1 51.4 ± 30.4 32.2 ± 23.8 417.0 ± 220.2
% of bext 24.7 20.1 35.2 12.3 7.7
Winter 181.9 ± 129.0 164.2 ± 149.7 313.0 ± 121.1 62.4 ± 21.5 32.5 ± 14.9 753.9 ± 376.7
% of bext 24.1 21.8 41.5 8.3 4.3
Annual 148.3 ± 130.8 99.0 ± 107.1 169.0 ± 118.2 45.2 ± 23.9 32.2 ± 27.8 493.6 ± 314.8
% of bext 30.0 20.1 34.2 9.2 6.5
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sites in China, Cao et al. (2012a), Yang et al. (2007) and Jung
et al. (2009) found that (NH4)2SO4 is the largest contributor
to bext, accounting for 37–41% of bext in Xi'an, Jinan and
Guangzhou, respectively, followed by OM (22–27%). For
non-urban sites in USA, Malm and Day (2000) reported that
OM contributes to ~35% of bext in the western USA, while
sulfate contributes to ~60–70% of bext in the eastern USA.
These large differences can be attributed to the variability in
the major chemical species responsible for light scattering at
different sites as well as to the effects of the ambient RH on
particle growth.

To further investigate the contributions of chemical
species to bext, budgets for the PM2.5 components during
the Best 20% and Worst 20% visibility days are calculated. As
shown in Fig. 6, for the Best 20% group, OM (39.9%) have the
largest effect on bext, followed by (NH4)2SO4 (29.5%), EC
(12.1%), soil dust (9.7%) and NH4NO3 (8.7%). In contrast, for
the Worst 20% group, (NH4)2SO4 (32.0%) have the largest
effect on bext, followed by OM (30.6%), NH4NO3 (27.3%), EC
(7.1%) and soil dust (3.0%). Even though the contribution of
(NH4)2SO4 have the largest effect on bext under the worst VR
conditions, it should be noted that the contribution of
NH4NO3 increased by a factor of ~3 from the Best 20% to
Worst 20% group. This indicates that emissions from fossil
fuel combustion play an important role in visibility degrada-
tion on Worst 20% days.
Fig. 6. Relative source contributions to chemical light extinction for the Best 20% an
February 2013.
3.4. Mass balance and source apportionment of PM2.5

More than 90% of the PM2.5 mass during the four seasons
is constituted by the following six components (Fig. 7): the
major water-soluble inorganic ions (SO4

2−, NO3
− and NH4

+),
OM, EC and soil dust. On an annual basis, the most abundant
components of PM2.5 are OM (28.0%) and soil dust (27.0%),
consistent with the results from fourteen Chinese cities
reported by Cao et al. (2012b). During spring, soil dust
constitutes the largest fraction of PM2.5, accounting for 42.3%
of the mass, followed by OM (27.1%) and SO4

2− (13.6%). In
summer, SO4

2− is the largest contributor, accounting for 28.5%
of the PM2.5 mass, followed by OM (21.1%), soil dust (20.9%),
NO3

− (11.0%), NH4
+ (6.9%) and EC (4.4%). During autumn, soil

dust (28.2%) and OM (28.0%) are the main components of
PM2.5, followed by SO4

2− (14.6%) and NO3
− (12.1%). Finally, in

winter, OM is the largest contributor to PM2.5, followed by
soil dust (16.6%), SO4

2− (15.5%), NO3
− (13.6%), NH4

+ (7.1%)
and EC (3.6%).

A positive matrix factorization (PMF) model, which is
widely used in source apportionment (Cao et al., 2012a; Chen
et al., 2010), is used to estimate the relative contribution of
aerosol sources that cause the visibility impairment. The
principles of PMF are described in detail elsewhere (Paatero
and Tapper, 1994). For the present study, seven elements (K,
Ti, Mn, Fe, As, Br and Pb), secondary inorganic ions (NO3

−,
d the Worst 20% of the annual visual range in Baoji between March 2012 and

image of Fig.�6
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Fig. 7. Mass balances of chemical species in PM2.5 from Baoji for the four
seasons and the entire year (March 2012–February 2013).

Fig. 8. Source profiles for the six sources identified by the positive matrix
factorization (PMF) model during the intensive sampling period in Baoji. The
Y-axes represent the percentage that each source contributes to individual
species.
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SO4
2− and NH4

+) and carbonaceous species (OC and EC) are
used as the model input. The resulting PMF factor profiles are
shown in Fig. 8. Linear regression analysis is then used to
estimate the contributions of major sources/factors to the
PM2.5 mass concentrations. The average source contributions
calculated are presented in Fig. 9.

Factor 1 is characterized with high load of SO4
2− and NH4

+,
which is associated with secondary sulfate and accounts for
23.0% of the PM2.5 mass. Factor 2 has high loading of NO3

− and
NH4

+, which is assigned to secondary nitrate. This factor
constitutes 15.5% of the PM2.5 mass. Factor 3 is characterized
with high contents of As, Pb, EC andMn, most likely associated
with coal combustion. This factor accounts for 19.9% of PM2.5

mass. Factor 4 has high loadings of Br, EC and OC and is
characterizedwithmotor vehicular emissions (Kim andHopke,
2004). This factor accounts for 6.8% of PM2.5 mass. Factor 5,
biomass burning, is characterized with high concentrations of
K and OC (Xie et al., 2008), accounting for 14.3% of PM2.5 mass.
Factor 6 is dominated by crustal elements Ti, Mn and Fe. This
factor represents fugitive dust derived mainly from unpaved
road dust resuspension and construction activities, which
accounts for 20.5% of PM2.5 mass.

4. Conclusions

Analyses of a long-term (1980–2012) data set of the
visibility in Baoji show that the 33-year average visual range
is 12.0 km. Although there is some fluctuation for certain
years, the Best 20% of the visibility observations for each year
shows a general decreasing trend of ~2.0 km/decade from
1994 onwards, while the Worst 20% of the annual observa-
tions exhibits a slight increasing tendency of ~1.0 km/decade
from 1997 onwards. This indicates that air pollution in Baoji
is getting worse in recent years.

Elevated PM2.5 mass concentrations are associated with
visibility lower than 10 km, and a PM2.5 threshold value of
112 μg m−3 is empirically derived from the relationship
between the daily visibility and the PM2.5 mass concentration
(that is, low visibility is observed when daily PM2.5 mass
loading exceeds 112 μg m−3). Based on amethod established
by the IMPROVE program, organic matter (OM) is found to be
the largest contributor to visibility impairment overall,
accounting for 34.2% of bext, followed by (NH4)2SO4 (30.0%),
NH4NO3 (20.1%), EC (9.2%) and soil dust (6.5%). For the Best
20% of the visibility for each year, OM (39.9%) is the largest
contributor to bext, followed by (NH4)2SO4 (29.5%), EC
(12.1%), soil dust (9.7%) and NH4NO3 (8.7%). In contrast, for
the Worst 20% of the visibility, (NH4)2SO4 (32.0%) is the
largest contributor to bext, followed by OM (30.6%), NH4NO3

(27.3%), EC (7.1%) and soil dust (3.0%). PM2.5 mass balance
analysis indicates that OM (28.0%) and soil dust (27.0%) are
the most abundant components of the PM2.5 mass overall.
The PMF receptor model indicates that secondary sulfate is
the main contributor to PM2.5 mass, accounting for 23.0% of
the PM2.5 mass loading, followed by fugitive dust (20.5%),
coal combustion (19.9%), secondary nitrate (15.5%), biomass
burning (14.3%) and motor vehicle emissions. Our results
quantify the sources responsible for visibility impairment in
Baoji and therefore provide a scientific suggestion for the
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Fig. 9. Average source contribution for each PMF source factor to PM2.5 mass
concentration in Baoji (March 2012–February 2013).
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development of practical pollution control measures for the
local policy makers.
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