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ABSTRACT 
 

The Smoluchowski equation has become a fundamental equation in nanoparticle processes since it was proposed in 
1917, whereas the achievement of its analytical solution remains a challenging issue. In this work, a new analytical 
solution, which is absolutely different from the conventional asymptotic solutions, is first proposed and verified for non-
self-preserving nanoparticle systems in the free molecular regime. The Smoluchowski equation is first converted to the 
form of moment ordinary differential equations by the performance of Taylor expansion method of moments and 
subsequently resolved by the separate variable technique. In the derivative, a novel variable, g = m0m2/m1

2, where m0, m1 
and m2 are the first three moments, is first revealed which can be treated as constant. Three specific models are proposed, 
two with a constant g (an Analytical Model with Constant g (AMC), and a Modified Analytical Model with Constant g 
(MAMC)), and another with varying g (a finite Analytical Model with Varying g (AMV)). The AMC model yields 
significant errors, while its modified version, i.e., the MAMC model, is able to produce highly reliable results. The AMV 
is verified to have the capability to solve the Smoluchowski equation with the same precision as the numerical method, but 
an iterative procedure has to be employed in the calculation. 
 
Keywords: Analytical solution; Taylor-expansion method of moments; Smoluchowski equation; Nanoparticle Brownian 
coagulation; Free molecular regime. 
 
 
 
INTRODUCTION 
 

Brownian coagulation is regarded as the most important 
inter-particle mechanism modifying the size distribution of 
particles in processes involving nanoparticle synthesis, 
polymerization, aerosol, emulsification and flocculation 
(Fox, 2008; Anand et al., 2012; Buesser and Pratsinis, 2012; 
Menz et al., 2014). Because of Brownian coagulation, the 
particle systems are always unstable, even in the absence of 
turbulence (Friedlander, 2000; Crowe et al., 2011; Sitarski, 
2012; Wei, 2013). The theory for Brownian coagulation was 
originally devised for liquids by Smoluchowski (1917) and 
was subsequently applied in other chemical process and 
environmental fields. The governing equation for Brownian 
coagulation has been established for nearly a century in its 
integral-differential form (Müller, 1928), which is usually 
called the Smoluchowski equation (SE), but the solution  
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for it remains a challenging issue due to its nonlinear 
integral-differential property (Debry et al., 2003; Wang et 
al., 2007; Wei and Kruis, 2013). Currently, the process of 
Brownian coagulation receives much more attention in the 
newly emerging fields of aerosol science, cloud science, 
supercritical fluid processes and nanoparticle synthesis 
engineering (Garrick, 2011; Yu and Lin, 2010a; Buesser and 
Pratsinis, 2012), where the quick and reliable predication of 
the size distribution of particles has become a critical issue 
(Seipenbusch et al., 2008). In such conditions, a reliable 
analytical solution for solving SE due to Brownian 
coagulation becomes necessary. 

The solution for SE due to Brownian coagulation has been 
widely studied by researchers for many years, including the 
analytical solution and numerical solution, which have 
been reviewed in (Kruis et al., 2000; Vogel et al., 2014). 
Although the numerical solution is better than the analytical 
solution in precision (Wang et al., 2007; Yuan and Fox, 
2011; Zhao and Zheng, 2009; Wei and Kruis, 2013; Menz et 
al., 2014), it consumes much more computational expenses 
and thus may not be suited for the quick determination of 
particle properties (Claudotte et al., 2010; Rigopoulos, 2010). 
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The analytical solution was firstly used to solve the SE due 
to Brownian coagulation by Smoluchowski (1917), but this 
work is limited to monodisperse particles. In fact, in the 
atmospheric and process engineering conditions, most particles 
are polydisperse, rather than monodisperse (Friedlander, 
2000; Kim and Kim, 2002; Khalili et al., 2010; Buesser and 
Pratsinis, 2012), and the Smoluchowski analytical solution is 
only an ideal model and cannot be applied in real 
conditions. In the recent studies on engineered nanoparticle 
exposure, the Smoluchowski analytical solution was further 
developed and extended from monodisperse systems to 
bidisperse systems, but it is still limited to its inability to 
characterize the evolution of size distributions (Seipenbusch 
et al., 2008). An analytical method for solving size-resolved 
coagulation has been developed based on the use of 
similarity transformation for the size distribution function 
(Swift and Friedlander, 1964; Friedlander and Wang, 1966). 
It is determined that the shapes of the distribution at different 
times are similar when reduced by a scale factor, and the 
particle must be at the self-preserving status (Swift and 
Friedlander, 1964). The self-preserving theory is considered 
to be among the most important theories in particle science 
in which the geometric standard deviation (GSD) of the 
size distribution is kept constant, whereas it is inconsistent 
with the property of some particles because the GSD may 
be an arbitrary value more than 1.0. Lee and Chen (1984), 
Lee et al. (1984) and Park et al. (1999) found that it is 
feasible to assume the size distribution to follow the log-
normal distribution, and based on this assumption, his group 
successfully developed a series of analytical models for 
solving SE due to Brownian coagulation at different size 
regimes. However, as they acknowledged in their works, the 
formulas for obtaining total particle number concentration, 
geometric standard deviation or geometric mean diameter 
have to be coupled and dependent of each other, thus, iterative 
techniques have to solve the coupled equations.  

Since proposed in 2008 (Yu et al., 2008), the Taylor-
expansion method of moments (TEMOM) has been widely 
employed in studies due to its simple mathematical 
construction of ordinary differential equations and highly 
reliable precision (Yu and Lin, 2009a, b, 2010b; Xie et al., 
2012). It has also been developed in different versions with 
specific requirements (Lin and Chen, 2013; Chen et al., 2014). 
Similar to the solution of Lee et al. (1984), the asymptotic 
behavior of the TEMOM ordinary differential equations 
(TEMOM ODEs) has been investigated in (Xie and Wang, 
2013; Xie, 2014). In recent studies on the TEMOM ODEs, 
a novel variable, g = m0m2/m1

2, where m0, m1 and m2 	are the 
first three moments, it was revealed that they can be treated 
as constant in the derivation; thus, the analytical solution 
for SE can be directly achieved. In fact, in the studies of 
the TEMOM ODEs, it was found that the geometric standard 
deviation of particle number distribution can be characterized 
by the definition ln2(σg) = (1/9)ln(g), where σg is the GSD 
of the size distribution, although no log-normal distribution 
was employed. For GSD, it has been confirmed that it is a 
constant of 1.345 from the TEMOM method and QMOM 
method (Yu et al., 2008) and 1.355 from log-normal method 
(Lee et al., 1984) in the free molecular regime. The variance 

of GSD with the Knudsen number is presented in Fig. 1. It 
needs to emphasize the TEMOM ODEs with three order 
Taylor expansion series is the best selection for deriving 
the analytical solution due to its both simple mathematical 
structure and high precision, which has been discussed in 
(Yu et al., 2008). The newly proposed solution has been 
verified with high precision for self-preserving particles, 
but its ability for non-self-preserving particles still needs to 
be verified.  

Therefore, in this work, an alternative analytical solution 
for solving SE due to Brownian coagulation will be proposed 
and verified as the particle deviates from the self-preserving 
status. The investigated particles are limited to the free 
molecular regime; thus, the newly proposed solution is only 
valid with a Knudsen number of more than 10, as shown in 
Fig. 1. To validate the analytical solution with precision, 
the numerical method from the highly reliable Runge-Kutta 
algorithm (NM) for the same ODEs will be used as a reference.  
 
THEORIES 
 

The integral-differential SE was firstly proposed by 
Müller in 1928 based on the Smoluchowski groundbreaking 
work for coagulation process (Müller, 1928; Smoluchowski, 
1917), and it takes the following form, 
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where n(v, t)dv is the particle number whose volume is 
between v and v + dv at time t, and β(v, v') is the collision 
kernel for two particles of volumes v and v'. In the free 
molecular regime, the collision kernel was derived from gas 
kinetic theory, which is expressed by (Friedlander, 2000), 
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constant, T is the gas temperature and ρ is the mass density 
of the particles. The Taylor-expansion method of moments 
(TEMOM) is introduced in solving Eq. (1) with the closure 
model for the k-th moment (Yu et al., 2008), 
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where u is the Taylor expansion point. In this work, u is 
defined to be m1/m0. The TEMOM ordinary differential 



 
 
 

Yu and Seipenbusch, Aerosol and Air Quality Research, 14: 1726–1737, 2014 1728

 
Fig. 1. Changes in the geometric standard deviation (GSD, σg) as a function of the Knudsen number (Kn) over the entire 
size range. λ is the mean free path of gas molecules, 68.410 nm, and r is the particle radius. 

 

equations (TEMOM ODEs) take the following expression 
(Yu et al., 2011), 
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In this equation, g = m0m2/m1
2, and the k-th moment is 

defined as  
0

.k
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   The zeroth moment, m0, 

represents the particle number concentration, which decreases 
with the growth of the particle size. The first moment, m1, 
remains constant in Brownian coagulation process and is 
proportional to the total particle mass. The second moment, 
m2, is usually used as an index to characterize the total light 
scattered, which increases with the growth of the particle 
size and polydisperity (Settumba and Garrick, 2003). If Eq. 
(4) are further disposed by a dimensionless solution with 
mk = Mkmk0 and mk0 = Nvg0

k, then they have the following 
expression, 
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where τ1 = tNB1(vg0)
1/6, and N and vg0 	are the initial total 

particle number and geometric mean size, respectively. The 
same dimensionless time was used in the analytical solution 
for solving SE with the assumption of a log-normal 
distribution (Lee et al., 1984). If g can be regarded as a 
constant, the analytical solutions for Eq. (5) should be, 
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are the zeroth, first and second moments at initial time, 
separately. In the above derivation, the separation of variables 
technique was used. Eq. (6) exhibits the novel property in 
that the first three moments are decoupled, and especially 
both M0 and M2 are only functions of the dimensionless 
time τ1. Here, it needs to point out in the derivation only 
three order terms of Taylor expansion series are reserved. 
Although high precision is expected to achieve with higher 
order terms of Taylor expansion series, it is not feasible 
here because higher order terms of Taylor expansion series 
leads to too much complicated TEMOM ODEs whose 
analytical solution cannot be obtained. In fact, as shown in 
the following work, three order terms of Taylor expansion 
series meet the requirement of solving Smoluchowski 
Equation in precision. 
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COMPUTATIONS 
 

The calculations were all performed on an Intel (R) Core 
i7-3573U CPU 2.5 GHz computer with 4GB memory. The 
fourth order Runge-Kutta method with a fixed time step of 
0.001 was used to solve the TEMOM ODEs in the numerical 
solution. For all numerical and analytical solutions, the total 
time was up to 100. All the programs codes were written with 
the C++ Programming language under the platform of 
Microsoft Visual Studio 2008 compiler. The calculation of 
the relative error for any variables follows the definition (Yu 
et al., 2008),  
 

% 100%NM
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where ϕ is the arbitrary variable and ϕNM is the referenced 
numerical variable. In the present study, a criterion is 
proposed for assessing the ability of the analytical method 
in solving SE due to Brownian coagulation, i.e., the 
investigated analytical method and the reference numerical 
method are considered to have the same precision in solving 
SE if the absolute relative errors, |RE%|, are less than 0.050. 
In the calculation, all initial dimensionless moments take 
the following expressions: 
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where 
2

g /2w
e  , wg = 3lnσg0 and σg0 is the initial GSD. In 

this work, the determinations of first three moments are 
reached by three specific models, two with constant GSD 
(AMC model and MAMC model) and another with varying 
GSD (AMV model). In the AMC and MAMC, the solutions 
for the first three moments are decoupled, whereas in the 
AMV the solutions for the formula, g = M0(τ1)M2(τ1)/M1(τ1)

2, 
as well as for the first three moments, have to be coupled 
where an iterative calculation is required. In the AMV, g 
needs to be obtained first with the first three moments at 
the last time step (τ1 – ∆t). It is then used in the acquirement 
of first three moments at the current time step (τ1). In this 
way, the time step size (∆t) should be small enough so that 
no significant errors arise when introducing g to the 
solution for M0, M1 and M2 shown in Eq. (5). In the present 
study, the time step for the AMV is fixed at 0.001, same as 
the time step for the NM. Thus, the AMV is actually a 
finite analytical model. 
 
RESULT AND DISCUSSION 
 

In the free molecular regime, the successful achievement 
of an analytical solution for the SE is attributed to the 
novel dynamical property of particles that the GSD of the 
size distribution can be treated as a constant (Lee et al., 
1984; Vemury et al., 1994; Friedlander and Wang, 1966). 
This treatment is valid for self-preserving particulates since 

the GSD in the free molecular has been confirmed to be a 
constant (Lee et al., 1984). In this work, it needs to be 
verified whether the newly proposed analytical method can 
also be valid at the non-self-preserving status, or whether 
the analytical method is able to produce the result within a 
reasonable error range for non-self-preserving particles. 
 
The Zero Moment (M0) 

The governing equations for particles dominated solely 
by Brownian coagulation mechanism must meet the 
following requirement since the total particle number 
concentration decreases and the second moment increases 
with time (Yu et al., 2008), 
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In the free molecular regime, the effective range of the 

TEMOM ODEs in terms of GSD is confirmed to be at σg∈ 
(1.000, 1.601) through solving Eq. (9). In the acquirement 
of the effective range of GSD, the relationship between σg 
and g, i.e., ln2(σg) = (1/9)ln(g), is employed. Within this 
range, the TEMOM model is expected to solve SE due to 
Brownian coagulation with any initial size distribution. 
Because the TEMOM ODEs are solved by an analytical 
solution, the effectiveness needs to be verified by comparison 
with the existing reliable methods. In the present work, the 
numerical solution with the highly reliable 4th-order Runge-
Kutta algorithm is selected as the reference for comparison 
(Yu et al., 2008). Figs. 2(a) and 2(b) separately show the 
RE% of the AMV and the AMC to the NM for M0 as the 
particle initially follows the different distributions, i.e., 
different initial GSD. The RE% are obtained through solving 
Eq. (7) shown in Section 3. Six different initial GSD and 
σg0 are distributed over the entire effective range of the 
TEMOM ODEs in terms of GSD. In the performance of 
the AMC, the GSD is always the same as the initial value, 
whereas in the AMV, the GSD is updated at the end of each 
interaction as discussed in Section 3. To make it more 
convenient to be analyzed, the horizontal axis is scaled by 
a log operation for Fig. 2(a). The same operation will be 
executed for Fig. 4(a) below.  

Fig. 2(a) shows that the distribution initially deviates 
much more from the self-preserving size distribution, i.e., 
σg0 deviates much more from 1.345, which was considered 
to be the value of the self-preserving status in the free 
molecular regime (Yu et al., 2008), the absolute value of 
RE% achieves larger values. The absolute RE%s are always 
limited to a very small range of variance, and they all have the 
same trend of finally converging to zero for all investigated 
distributions. The maximum RE%, 0.031, is reached at a 
distribution with σg0 = 1.600, once the particle evolves for a  
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 (a) (b) 

Fig. 2. The comparison of relative errors of the AMV (a) and the AMC (b) to the NM with six different initial size 
distributions for M0. 

 

short dimensionless time, ~1.000. The maximum absolute 
value of RE% for each distribution occurs at nearly the 
same dimensionless time, ~1.000. More importantly, the 
RE% for all distributions over the entire evolution time are 
less than the value of the criterion, 0.050, which is proposed 
in Section 3. Based on the definition for the criterion 
shown in Section 3, the AMV can be considered to produce 
M0 with the same precision as the NM. 

Compared to the AMV, the AMC produces relatively larger 
errors for M0 as the same six distributions are investigated, 
which is clearly shown in Fig. 2(b). In the figure, except 
for the self-preserving size distribution with σg0 = 1.345, 
which is a special case in the free molecular regime (Yu et al., 
2008), the absolute values of RE% for the other distributions 
are all more than 0.05 once the particles evolve for a short 
dimensionless time, i.e., ~1.000. It is clear that as the initial 
GSD deviates much more from 1.345, the larger absolute 
values of RE% are generated, which is the same as the 
AMV shown in Fig. 2(a). In Fig. 2(b), the RE% approaches 
0.250 in the distribution with σg0 = 1.600. In such a case, the 
results generated by the AMC cannot be used as reliable 
results for solving SE due to Brownian coagulation. However, 
a novel property of the AMC is revealed in Fig. 2(b), in that 
for any distribution, the value of RE% quickly approaches 
its maximum or minimum value at the initial stage (the 
dimensionless time is below ~10.000) and then maintains 
this value at the later stage, which means the relative errors 
of the AMC to the NM for producing M0 are unchanged once 
the particle evolves for a short time. More importantly, this 
difference depends only on one quantity, i.e., the initial GSD. 
Therefore, the modification of the AMC can be achieved 
by including an additional term accounting for the relative 
errors of the AMC to the NM. To achieve this, the relationship 
between the RE% of the AMC to the NM and the initial 
GSD for different distributions needs to be determined. 

To determine the relationship between the initial GSD 

and the RE%, many more initial distributions up to 24 are 
investigated by the performance of the NM calculation and 
the AMC calculation. The RE% of the AMC to the NM 
relevant to the initial GSD are shown in Fig. 3. The data for 
the initial GSD, as well as the corresponding RE%, have 
been attached online as Data-Fig. 3. It shows that the 
variance of RE% for M0 is limited in the range from -0.240 
to 0.138. The relationship between the initial GSD and 
RE% can be represented by a suitable mathematical equation 
by performing the 6th degree polynomial fitting technique. 
In mathematics, the fitting function fits much more to the 
initial data if the polynomial degree is selected as a larger 
value. Here, the mathematical equation relating the initial 
GSD to RE% is, 
 
f(σg0)free–m0 = 0.00018895ω6 + 0.001492ω5 + 0.0043408ω4 
+ 0.0046002ω3 – 0.031742ω2 – 0.13938ω – 0.012157 
 (10) 
 
with ω = (σg0 – 1.359)/ 0.16273. f(σg0)free–m0 is the function 
of σg0 representing the relationship between the initial GSD 
and the RE% over the entire effective regime of TEMOM 
ODEs. Correspondingly, the residuals in the performance 
of curve fitting are also shown in Fig. 3, whose absolute 
values are always less than 0.0001, indicating that the fitting 
Eq. (10) is high reliable. Therefore, the analytical solution 
for M0 in Eq. (3) can be modified as following, 
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The second moment, M2, is an important quantity 
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Fig. 3. The RE% of the AMC to the NM for M0 relevant to the initial GSD, as well as the corresponding fitting curve, 
f(σg0)free–m0 (a); the residuals produced in the performance of the 6-th degree polynomial fitting operation (b). 

 

characterizing particle polydispersity and particle mean size 
(Friedlander, 2000). Because only the Brownian coagulation 
mechanism is involved, the second moment always increases 
with the growth of the particle size and polydisperity 
(Settumba and Garrick, 2003). In this section, the same six 
distributions as in Section 4.1 are selected and investigated. 
The RE% of the AMV and the AMC to the NM for M2 are 
shown in Figs. 4(a) and 4(b), respectively. In Fig. 4(a), the 
absolute RE% for all distributions initially increases to each 
maximum value and then quickly decreases and converges 
to zero. The lag times to reach the maximum value for all 
distributions are nearly the same, ~1.000. Over the entire 
time range, the distribution with the initial GSD deviating 
more from the self-preserving value of 1.345 has larger RE%. 
The absolute RE%, 0.069, is achieved in its maximum value 
at the distribution with σg0 = 1.600 and at dimensionless 
time, ~1.000, but it quickly decreases to be less than the 
value of criterion at the dimensionless time of ~1.855. This 
means that under the criterion, the AMV is able to produce 
M2 with the same precision as the NM once the particle 
evolves for a short time.  

The RE% of the AMC to the NM for M2 are shown in 
Fig. 4(b). In this figure, the RE% quickly increases to a 
constant at dimensionless time of ~10.000 and later remains 
at this value at the later stage for all six distributions. This 
is similar to the zeroth moment shown in Fig. 2(b). An 
important conclusion can be drawn that the RE% of the 
AMC to the NM for M2 are also unchanged once the 

particle evolves for a short time. Therefore, it is feasible to 
obtain the relationship between the initial GSD and the 
RE% for M2, which is shown in Fig. 5. The curve obtained 
by performing the 7th degree polynomial fitting technique, 
as well as the corresponding residuals, are also shown in this 
figure. The data for the initial GSD and the corresponding 
RE% have been attached online as Data-Fig. 5. The residuals 
are always below 0.010, ensuring that the fitting equation 
is reliable, although it is not as high as in Fig. 3 in precision. 
Here, the fitting equation obtained by the performance of 
the fitting technique is, 
 
f(σg0)free–m2 = 0.0037563ϵ7 + 0.010874ϵ6 – 0.016636ϵ5 – 
0.088877ϵ4 – 0.12637ϵ3 – 0.10002ϵ2 + 0.0075218ϵ – 
0.00032143 (12) 
 
with ϵ = (σg0 – 1.359)/0.16273. When Eq. (12) is introduced 
in the solution for M2 shown in Eq. (6), the modified solution 
should be, 
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Finally, the modified AMC, i.e., the MAMC, takes the 

following expression, 
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 (a) (b) 

Fig. 4. The comparison of the relative errors of the AMV (a) and the AMC (b) to the NM with six different initial size 
distributions for M2. 
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The MAMC shown in Eq. (14) reserves the advantage of 

its original version in the decoupled solution for the first 
three moments, but it generates more precise results because 
of the additional modified terms accounting for the difference 
between the original AMC and the NM. Once the first 
moments are achieved by solving Eq. (14), the key quantities 
of any particle including the total particle number 
concentration, the total particle volume concentration, the 
geometric mean size, and the geometric standard deviation 
of size distribution, are also determined (Lee and Chen, 
1984; Settumba and Garrick, 2003; Yu et al., 2008). 

 
Evolution of the Size Distribution Relevant to the AMV 

The GSD is the most important index characterizing the 
polydisperse property of particles (Lee et al., 1984), and thus, 
the ability to exactly trace the evolution of GSD with time 
is the criteria to distinguish good and bad models (Pratsinis, 
1988). Figs. 6(a) and 6(b) separately show the varied GSD 
with time for both AMV and NM, as well as the corresponding 
RE% of the AMV to the NM. It is found from Fig. 6(a) that 
the GSD from the AMV are nearly the same as the NM, 
although the NM is calculated by fourth order Runge-Kutta 
interactions, consuming a relatively higher computational 

cost. For the four investigated distributions shown in Fig. 6(a), 
the GSDs are found to quickly converge to a constant, which 
is consistent with the self-preserving theory first found by 
Friedlander and Wang (1966) and later confirmed in Lee et 
al. (1984) and Yu et al. (2008). In Fig. 6(b), similar to the 
solution for both M0 and M2 shown in Figs. 2(b) and 3(b), 
the RE% of the AMV to the NM for GSD are calculated by 
solving Eq. (7). The variance of RE% for GSD with time 
has the same trend as M0 and M2. The absolute RE% initially 
increases to approach the maximum and then decreases 
until it converges to zero. All distributions achieve their 
own maximum value for GSD at nearly the same time, 
~1.000, which is consistent with that for M0 and M2 shown 
in Figs. 2(a) and 4(a). It is also shown the RE%s for GSD 
are limited to a very small range of variance with the 
maximum of 0.015, which is less than the value of criterion 
proposed in this work shown in Section 3. The AMV is 
thus verified to be able to characterize the GSD with the 
same precision as the NM. 

Based on the above analysis of the three key statistical 
quantities, i.e., M0, M2 and σg, the AMV is verified to be 
able to solve SE due to Brownian coagulation for non-self-
preserving particles. Thus it has strong potential to replace 
the NM due to the inherent advantage of the analytical 
solution. 
 
Verification of the MAMC Model 

In Sections 4.1 and 4.2, the MAMC has been proposed as 
the modified version of the AMC, but its ability for solving 
SE due to Brownian coagulation needs to be verified 
quantitatively. To validate the MAMC, the NM is selected 
to be the reference for comparison. In Fig. 7, the comparison 
of the results produced by the NM, the MAMC and the 
AMC for M0, M2 and σg is exhibited. As examples, two 
different initial distributions, i.e., σg0 = 1.200 and 1.500, are 
selected. For both M0 and M2, it is shown that the results 
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Fig. 5. The RE% of the AMC to the NM for M2 relevant to the initial GSD, as well as the corresponding fitting curve, 
f(σg0)free–m0 (a); the residuals produced in the performance of the 7th degree polynomial fitting operation (b). 
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Fig. 6. The comparison of GSD produced by the NM and the AMV with time (a) and the RE% of the AMV to the NM (b). 
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 (a) (b) 

  
 (c) (d) 

 
 (e) 

Fig. 7. The variance of M0 with σg0 = 1.200 (a), 1.500 (b), M2 with σg0 = 1.200 (c), 1.500 (d) and GSD (e) with time up to τ1 = 100. 
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 (a) (b) 

 
 (c) 

Fig. 8. The RE% of the MAMC to the NM for M0 (a), M2 (b) and σg (c) with different initial distributions. 

 

range, many more distributions are required to be investigated 
and tested. To achieve this, six representative distributions, 
which span the entire effective GSD range, are selected. 
The RE%s of the MAMC to the NM for M0, M2 and σg with 
time are obtained by solving Eq. (7) and are presented in 
Fig. 8. For all six representative distributions, the variances 
of RE% for M0, M2 and σg with time exhibit the same trend, 
and ultimately, they all converge to zero. This result indicates 
that the differences between the NM and MAMC for the 
above three key statistical quantities, i.e., M0, M2 and σg, 
decrease with time until the difference vanishes. In the 
figure, the absolute values of RE% for M0, M2 and σg for 
each distribution are less than the criterion value, 0.050, 
once the dimensionless time of evolution is more than 
~10.000. In addition, it is found that the closer to 1.345 the 
GSD is the less lag time it takes to approach the criterion. 

In fact, the dimensionless time, τ1 = 10.000, corresponds to 
the physical time, t = 1.115 × 10–3 s, under the conditions 
in Section 3. In such a case, an important conclusion can be 
drawn that the MAMC has the same capability to solve SE 
due to Brownian coagulation as the NM once the particle 
evolves for a very short time. For longer times of evolution, 
there is higher precision of the MAMC. The MAMC has a 
significant advantage because it does not require interactive 
calculation and, more importantly, the acquirement of 
moments is decoupled. In conclusion, the MAMC has 
potential to replace the NM in processes involving Brownian 
coagulation due to its superior properties, and therefore, it 
is regarded as the ideal analytical solution for solving SE 
due to Brownian coagulation. 
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An analytical solution for the Smoluchowski equation 
(SE) is proposed and verified for resolving the Brownian 
coagulation process of non-self-preserving nanoparticle 
systems in the free molecular regime. The concept and 
approach employed in this study are simple and 
straightforward. The newly proposed analytical solution is 
absolutely different from the existing asymptotic solutions, 
and it is expected to extend beyond the asymptotic solution 
in its scope of application.  

The novel property of coagulated systems that the 
geometric standard deviation (GSD) of the size distribution 
can be treated as constant is employed in the derivation. In 
the performance of the analytical solutions, three specific 
models, i.e., the analytical model with constant geometric 
standard deviation (AMC model), the analytical model 
with varying geometric standard deviation (AMV model), 
and the improved version of the AMC (MAMC model), are 
separately proposed and verified by comparison with a 
highly reliable method, i.e., the numerical method with the 
4th-order Runge-Kutta algorithm (NM). The AMV is 
verified to have the capability to solve SE due to Brownian 
coagulation for non-self-preserving systems with the same 
precision as the NM under the criterion proposed in this work, 
but the solutions for the first three moments, as well as the 
novel variable, g = M0(τ1)M2(τ1)/M1(τ1)

2, have to be coupled 
and needs iterative calculation. The AMC yields significant 
errors for M0, M2 and σg that cannot be ignored; thus, it is 
unsuitable for solving SE due to Brownian coagulation at non-
self-preserving status. The MAMC reserves the advantage 
of the AMC in the decoupled solution for moments and is 
verified to produce the same results as the NM under the 
criterion after the particle evolves for a notably short 
dimensionless time τ1 = ~10.000, and thus has strong 
potential to replace the numerical method in the field of 
particle processes. 
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