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a b s t r a c t

Size distributions of ambient aerosols at the Fresno Supersite were measured with four commercially
available scanning mobility particle sizers (SMPS). TSI nano, TSI standard, Grimm, and MSP instruments
were collocated at the Fresno Supersite and particle size distributions were measured continuously from
August 18 through September 18, 2005. For particles with diameters between 10 and 200 nm, differences
among hourly-average ambient particle concentrations ranged from 0% between the TSI nano and Grimm
eywords:
erosol measurement
MPS
resno
upersite
ize distribution
ltrafine particles

in the 30–50 nm size range to 39% between the Grimm and MSP in the 10–30 nm size range. MSP concen-
trations were 10–33% lower than those measured with the TSI standard for particles smaller than 200 nm.
The TSI nano and TSI standard agreed to within 5% in their overlapping size range (10–84 nm). The TSI
nano and Grimm agreed to within 40% for 5–10 nm particles.

© 2011 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of
 Sciences. Published by Elsevier B.V. All rights reserved.
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. Introduction

Ultrafine (<100 nm) and fine (<2.5 �m) suspended particulate
atter (PM) fractions affect human health (Chow & Watson, 2007;
auderly & Chow, 2008; Pope & Dockery, 2006), visibility (Chow

t al., 2002; Watson, 2002), and the earth’s radiation balance
MacCracken, 2008; Princiotta, 2009). Because ultrafine particles
ontribute little to aerosol mass, PM2.5 and PM10 (particles with
erodynamic diameters less than 2.5 and 10 �m, respectively) may
ot be appropriate indices for evaluating the effects of aerosols on
uman health (Biswas & Wu, 2005; Chow, Watson, Savage, et al.,
005; Seigneur, 2009).

Scanning mobility particle sizers (SMPS) are used to contin-
ously measure the mobility size distributions of ultrafine and
ne particles (Chang et al., 2004; Eleftheriadis, Nyeki, Psomiadou,
Colbeck, 2004; Lowenthal, Borys, & Wetzel, 2002; McMurry &
oo, 2002; Stolzenburg et al., 2005; Wang & Flagan, 1990; Watson
t al., 2002; Watson, Chow, Park, & Lowenthal, 2006; Watson,
how, Lowenthal, et al., 2006). The SMPS consists of a parti-
le charge conditioner, a differential mobility analyzer (DMA), a
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ondensation particle counter (CPC), relevant flow rate and volt-
ge control devices, and data acquisition hardware and software
Wang & Flagan, 1990). The accuracy of the SMPS-measured size
istributions depends on: (1) the DMA construction, flow rates,
nd voltage accuracy (Knutson & Whitby, 1975); (2) the particle
harge distribution (Fuchs, 1963); (3) the CPC counting efficiency
s a function of particle size (Kesten, Reineking, & Porstendorfer,
991; Stolzenburg & McMurry, 1991); (4) particle transport time
Collins, Flagan, & Seinfeld, 2002; Russell, Flagan, & Seinfeld, 1995);
nd (5) particle transmission efficiency through the instrument
Reineking & Porstendörfer, 1986). The DMA transfer functions
ave been independently evaluated for some units (Ankilov et al.,
002a,b; Collins, Cocker, Flagan, & Seinfeld, 2004; Heim, Kasper,
eischl, & Gerhart, 2004; Stolzenburg, 1988; Wiedensohlet et al.,
997), most often using the tandem differential mobility analyzer
TDMA) with two DMAs in series (Birmili et al., 1997; Karlsson

Martinsson, 2003; Rader & McMurry, 1986; Stolzenburg, 1988).
he counting efficiency of the CPC as a function of particle diame-
er has been evaluated with respect to electrometers and/or other
PCs using laboratory-generated monodisperse particles (Ankilov
t al., 2002a,b; Collins et al., 2004; Kesten et al., 1991; Stolzenburg

McMurry, 1991; Wang, Caldow, Sem, Hama, & Sakurai, 2010;
iedensohlet et al., 1997). Commercially available SMPS instru-

ents use different DMAs, CPCs, flow rates, and data inversion

arameters and techniques. However, the comparability of these
nstruments has not been very well studied, especially under real-

orld measurement conditions.

ngineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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Table 1
Specification of SMPS instruments used in this study.

TSI nano TSI standard Grimm MSP

Model Model 3936N SMPS Model 3936L SMPS Model Grimm SMPS+C Model 1000XP WPS
Data reduction software Modifieda by Mark

Stolzenburg for Fresno
Supersite

Modifieda by Mark
Stolzenburg for Fresno
Supersite

Grimm 5.477 Version 1.33 WPS Commander
Version 2.4

Number of size bins (channels) 47c 52c 44d 48c

Time per scan including down scan (s) 150c 150c 230d 150c

Inlet impactor D50 (nm) ∼320 ∼420 ∼700 ∼500
Type of charge conditioner 85Kr 85Kr 210Po 210Po
DMA type Model 3085 Nano DMA Model 3081 Long DMA Model 5.500 Medium M-DMA MSP DMA
Particle size range (nm) 3–84 10–379 5–350 10–1000b

DMA aerosol flow rate (L/min) 1.5 1.0 0.3 0.3
DMA sheath-air flow rate (L/min) 10 7 3 3
CPC type UCPC (Model 3025A) CPC (Model 3010) CPC (Model 5.403) MSP CPC
CPC inlet flow rate/aerosol flow rate (L/min) 1.5/0.03 1.0/1.0 0.3/0.3 0.3/0.3
CPC concentration range (cm−3) up to 105 up to 104 up to 107 up to 104

Nominal CPC single counting accuracy (cm−3) ±10% up to 104 ±10% up to 104 ±5% up to 2 × 105 ±10% up to 104

Nominal CPC 50% counting size (nm) 3 10 5 4.5

a Software modifications were for data acquisition interfacing and did not relate to the SMPS processing algoritithms.
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b The particle size range from 10 to 300 nm was used in these comparisons.
c User selectable.
d For normal scan.

Rodrigue, Ranjan, Hopke, & Dhaniyala (2007) compared the per-
ormance of a TSI SMPS 3936-L22 (TSI Inc., Shoreview, MN, USA)
nd a MSP wide-range particle spectrometer (WPS XP-1000; MSP
orp., Shoreview, MN, USA) for laboratory-generated oil and carbon
articles. They found that the peak diameters were comparable in
he size range of 20–300 nm. The MSP WPS measured higher con-
entration than TSI SMPS for particles ∼70 nm because the MSP

PS software corrected for size-dependent particle losses in the
MA, while the TSI did not. For particles >70 nm, the TSI SMPS
oncentration was 5–25% higher than the MSP WPS. Asbach et al.
2009) compared size distributions of sodium chloride and diesel
oot measured by a TSI Fast Mobility Particle Sizer (FMPS), two
SI SMPS, and a Grimm SMPS (SMPS + C; Grimm AerosolTechnik
mbH & Co. KG, Ainring, Germany). The Grimm SMPS measured
igher concentrations with broader distributions than the TSI
MPS.

Laboratory-generated aerosols do not represent the complex
ixtures and environmental conditions (e.g., changes in tem-

erature and relative humidity) found in ambient air. Collocated
easurements by different SMPS provide more practical informa-

ion on the reliability and comparability of these instruments. In
his study, four SMPS instruments were collocated at the Fresno
upersite (Watson et al., 2000): (1) TSI nano SMPS (Model 3936N),
hich consists of a nano DMA (Model 3085) and an ultrafine CPC

UCPC; Model 3025A), hereafter referred to as the “TSI nano”;
2) TSI standard SMPS (Model 3936L), which consists of a “long”
MA (Model 3081) and a CPC (Model 3010), hereafter referred

o as the “TSI standard”; (3) Grimm SMPS + C, which consists of
Vienna-type DMA (Model 5.500) and a CPC (Model 5.403), here-
fter referred to as the “Grimm”; and (4) MSP WPS (Model 1000XP),
hich consists of a DMA, a CPC, and a laser particle spectrometer

LPS) operated in the scanning wide-range particle spectrometer
WPS) mode, hereafter referred to as the “MSP.” Ambient aerosol

easurements were made at the Fresno Supersite from August 18
hrough September 18, 2005. Inter-comparisons of particle num-
er concentrations in discrete size intervals from the measured size
istributions are presented.
. Experimental

Ambient PM was sampled at the Fresno Supersite (3425 First
treet, Fresno, CA, USA) approximately 5 km north-northeast of the

s
∼
S
r

owntown area. The site is located near roadways with moder-
te traffic and is surrounded by commercial buildings, churches,
chools, and residences. Aerosols were sampled through a PM2.5
ize-selective inlet located 10 m above the ground on the rooftop of
two-story building then distributed to the four SMPS instruments

ocated in an air-conditioned room on the second floor. The Fresno
erosol is well characterized (Chen, Watson, Chow, & Magliano,
007; Chow et al., 1992; Chow, Watson, Lowenthal, & Magliano,
005; Chow, Chen, et al., 2006; Chow, Watson, Lowenthal, Chen,
Magliano, 2006; Chow, Watson, Lowenthal, & Magliano, 2008;

inehart, Fujita, Chow, Magliano, & Zielinska, 2006; Watson et al.,
002) and is composed of contributions from regional wildfires and
rescribed burning, engine exhaust, secondary organic aerosol, and
econdary ammonium nitrate during the study period. Ammonium
ulfate contributions are small. Instrument comparability may dif-
er from that reported here for other aerosol mixtures.

The TSI nano was operated at sample and sheath-air flow rates
f 1.5 and 10 L/min, respectively, which acquired a particle size dis-
ribution (PSD) from 3 to 84 nm every 150 s. The TSI standard was
perated at sample and sheath-air flow rates of 1.0 and 7 L/min,
espectively, which acquired a PSD from 10–379 nm every 150 s.
he Grimm was operated at sample and sheath-air flow rates of 0.3
nd 3 L/min, respectively, which acquired a PSD from 5 to 350 nm
very 230 s. The MSP operated at DMA sample, sheath-air, and LPS
ow rates of 0.3, 3, and 0.7 L/min, respectively, and acquired a PSD

rom 10 nm to 10 �m every 150 s. The MSP in the 10–300 nm size
ange measured with the DMA and CPC were compared with those
easured by the other SMPS instruments. The two TSI SMPS instru-
ents used a 85Kr charge conditioner; the Grimm and MSP used a

10Po charge conditioner. All of the instruments were serviced by
he manufacturers prior to the experiment. Detailed specifications
f these instruments are presented in Table 1.

. Results

Hourly average particle size distributions (dN/dlog Dp versus
p) measured with the four SMPS instruments in Fresno Super-
ite are compared in Fig. 1. All PSDs are similar in shape; Fig. 1(a)

hows that all instruments measured two size modes, centered at
20 nm and at ∼40 nm at 14:00 Pacific Standard Time (PST) on
eptember 7, 2005. High concentrations at the ∼20 nm peak rep-
esent photochemically-induced particle nucleation under strong
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Fig. 1. Comparison of average particle size distributions measured with the TSI
nano, TSI standard, Grimm, and MSP instruments at the Fresno Supersite, California
for: (a) 14:00 PST on September 7, 2005; and (b) 04:00 PST on September 2, 2005.
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Fig. 2. Comparisons of hourly average particle concentrations (cm−3) in the
10–30 nm size range [N (10–30 nm)] for the four SMPS instruments. Regression
p
n
a

u
e

A

s
are found for the 200–300 nm size range, among the four SMPS
instruments. The largest differences of −42% to +262% also occur
olar radiation during summer (Watson et al., 2002). For the early
orning (04:00 PST) samples collected on September 2, 2005,

ig. 1(b) shows that particle number concentrations were lower
nd the major size mode shifted to about 90 nm. This case probably
epresents a more aged aerosol. The Grimm measured higher con-
entrations below 100 nm but lower concentrations above 100 nm
elative to the TSI standard and the MSP, which measured the low-
st concentrations up to about 100 nm. The upturn at the lower end
f the TSI standard PSD in Fig. 1 was attributed by Watson, Chow,
ark, & Lowenthal (2006) to “time smearing” in the TSI Model 3010
PC which occurs when the CPC counts residual particles from the
revious down scan.

Studies of particle nucleation and evolution focus on the
ower end of the ultrafine particle size range (i.e., <30 nm). Fig. 2
hows that hourly-average 10–30 nm particle concentrations from
he different instruments were highly correlated (0.97 ≤ r ≤ 1.00)
lthough the slopes and intercepts show differences in the absolute
alues. The regression slopes with respect to the TSI nano were 0.92
or the TSI standard, 1.09 for the Grimm, and 0.73 for the MSP, while
ntercepts varied from −7.4 cm−3 for the MSP to 365 cm−3 for the
rimm compared with the TSI nano. The TSI standard and the TSI
ano provided the most comparable results in the overlap region.
verage hourly particle concentrations in six size intervals (i.e.,
–10, 10–30, 30–50, 50–100, 100–200, and 200–300 nm) over the
mbient sampling period are shown for each SMPS in Fig. 3. Since
he reporting size intervals differ among the instruments, size dis-
ributions are expressed in concentrations per unit size (dN/dDp) in
nits of (cm−3 nm−1). The TSI nano is not included in the 50–100 nm
ize range in Fig. 3 because its upper size limit is 84 nm. Particles
ere most abundant in the 10–30 nm range, but the best agree-

ent among the different instruments was found for the 30–50

nd 100–200 nm size ranges.
i
t

arameters are shown for: (a) TSI standard versus TSI nano; (b) Grimm versus TSI
ano; and (c) MSP versus TSI nano at the Fresno Supersite between August 18, 2005
nd September 18, 2005.

Table 2 compares hourly average particle concentrations per
nit size for the same six size intervals. The average paired differ-
nces are defined for instruments x and y as:

verage Difference = 100
N

∑ y − x

x
. (1)

The overall average correlation is 0.92, or 0.95 for the first five
ize intervals (i.e., 5–200 nm). The lowest correlations of 0.55–0.74
n the 200–300 nm size range, probably due to low concentra-
ions in this region. The two TSI instruments agreed to within 4.8%
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ig. 3. Hourly average particle concentrations per unit size (cm−3 nm−1) in six size
nd September 18, 2005.

or the 10–84 nm size range. The Grimm measured 40% and 23%
igher concentrations than the TSI nano in the 5–10 and 10–30 nm

ntervals, respectively, the same concentrations (on average) in
he 30–50 nm size range, and 0.1% lower concentrations in the
0–84 nm size range. The Grimm measured 16.3% lower concen-

rations than the TSI standard in the 100–200 nm size range. The

SP yielded 10–33% lower concentrations compared to the two
SI instruments for Dp < 200 nm, and reported 39% lower concen-
rations than the Grimm for the 10–30 nm size range.

w
s
p
d

able 2
omparisons of hourly-average particle concentrations per unit size (cm−3 nm−1) in six s

Size range SMPS instrument Avg. of y Avg. of x

y x (cm−3 nm−1)

N (5–10 nm) Grimm TSI nano 210 161

N (10–30 nm) TSI standard TSI nano 188 196
Grimm TSI nano 232 195
MSP TSI nano 147 203
Grimm TSI standard 232 188
MSP TSI standard 147 195
MSP Grimm 147 240

N (30–50 nm) TSI standard TSI nano 126 125
Grimm TSI nano 123 127
MSP TSI nano 115 127
Grimm TSI standard 123 127
MSP TSI standard 115 127
MSP Grimm 116 125

N (50–100 nm) TSI standard TSI nanob 76 79
Grimm TSI nanob 80 80
MSP TSI nanob 53 78
Grimm TSI standard 60 61
MSP TSI standard 44 60
MSP Grimm 44 60

N (100–200 nm) Grimm TSI standard 9 10
MSP TSI standard 9 10
MSP Grimm 9 9

N (200–300 nm) Grimm TSI standard 0.4 0.7
MSP TSI standard 1.1 0.7
MSP Grimm 1.1 0.4

a Average difference = 100
N

∑
y−x

x .
b N (50–84 nm) was used for comparisons with the TSI nano SMPS.
als for the four SMPS instruments at the Fresno Supersite between August 18, 2005

The statistical moments of the PSD have been used to describe
erosol optical, growth, and cloud activation properties (McGraw,
emesure, & Schwartz, 1998; Wright et al., 2002). It is thus useful

o compare the particle sizes measured with the different SMPS
nstruments in terms of their central tendencies and variances,
hich are represented by the geometric mean diameter (Dg) and
tandard deviation (Sg). For the 10–300 nm range, the time series
lot in Fig. 4 shows that 24-h average Dg and Sg for the TSI stan-
ard, Grimm, and MSP measurements were 41 ± 2.0, 37 ± 1.9, and

ize intervals measured with four SMPS instruments at the Fresno Supersite.

Number of
pairs

Average
difference

Correlation (r) Regression
slope

Regression
intercept

(%)a (cm−3 nm−1)

704 40 0.91 1.18 19.7

764 −2.1 0.99 0.92 8.9
704 23 0.98 1.09 18.3
681 −27 0.97 0.73 −0.4
704 26 0.97 1.18 9.8
681 −25 0.96 0.78 −4.9
629 −39 0.96 0.64 −7.5

764 1.2 0.99 0.96 5.4
704 0.0 0.94 0.84 17.0
681 −9.6 0.98 0.89 1.50
704 −1.2 0.95 0.88 11.7
681 −10.5 0.98 0.92 −2.9
629 −6.8 0.95 0.96 −4.3

764 −4.8 0.99 0.97 −1.10
704 −0.1 0.93 0.97 2.2
681 −33 0.98 0.68 −0.80
704 −1.4 0.93 0.97 1.00
681 −27 0.98 0.72 0.50
629 −24 0.92 0.65 5.3

704 −16.3 0.87 0.89 −0.30
681 −13.0 0.99 0.86 0.10
629 19.5 0.86 0.72 2.5

704 −42 0.74 0.45 0.10
681 62 0.73 1.48 0.10
629 262 0.55 1.76 0.40
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Fig. 4. Time series of 24-h average geometric mean diameter (Dg) and geometric
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tandard deviation (Sg) for the 10–300 nm range measured with the TSI standard,
rimm, and MSP instruments at the Fresno Supersite between August 18, 2005 and
eptember 18, 2005.

2 ± 1.9 nm, respectively. The ∼5% lower Dg for the Grimm is con-
istent with its relatively higher concentrations in the smaller size
ntervals (Table 2). The Sg averages were the same within ±5%.
hese parameters were well correlated (r > 0.92 for Dg and r > 0.89
or Sg) among different SMPS instruments. Malm and Pitchford
1997) reported inverse relationships between Dg and Sg at sites
n the Grand Canyon. However, correlations between 24-h average
g and Sg in Fresno were only 0.22, 0.46, and 0.45 for the TSI stan-
ard, Grimm, and MSP size distributions, respectively. This may be
ue to Malm and Pitchford (1997) having reported particle mass
hile this study is based on particle number.

. Summary and conclusions

TSI nano, TSI standard, Grimm SMPS + C, and MSP WPS instru-
ents were compared at the Fresno Supersite from August 18

hrough September 18, 2005. Similarly shaped particle size dis-
ributions were found among the four instruments. For particles
etween 10 and 200 nm, the difference between instruments
anged from 0% between the TSI nano and Grimm in the 30–50 nm
ize range to 39% between the Grimm and MSP in the 10–30 nm
ize range for hourly average concentrations. Larger discrepancies
40–262%) were found for small (5–10 nm) and large (200–300 nm)
article size ranges. The TSI nano and TSI standard SMPS agreed to
ithin 1–5% in the 10–84 nm size range. MSP concentrations were

onsistently 10–33% lower than those measured by the two TSI
nstruments for Dp < 200 nm.
Differences among SMPS instruments may be related to dif-
erences in particle charging efficiency, CPC counting efficiency,
iffusion losses, and non-ideal DMA transfer functions. The charg-

ng efficiency as a function of particle size was theoretically

C

gy 9 (2011) 204–209

etermined from Fuchs (1963) theory for each SMPS, providing
lmost the same efficiency curve among instruments. However,
he actual efficiencies of the charge conditioners are unknown
nd could have been different. Similarly, theoretical DMA transfer
unctions are used in the data reduction software. But the actual
MA transfer functions might deviate from the ideal model due to

mperfect machining, for example. Each manufacturer determines
universal CPC counting efficiency curve to correct concentration
ata in each SMPS instrument. Such counting efficiency curves are
enerally determined on a single CPC, and not every CPC sold is indi-
idually calibrated. Most SMPS instrument end-users do not have
he resources required to rigorously evaluate their performance.
he results presented in this study represent the order of measure-
ent uncertainty that users can expect in real-world applications

o an urban aerosol. Rigorous experiments and better documenta-
ion of the assumptions inherent in the data processing software
or each instrument are needed to determine the actual causes of
he differences.
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