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a b s t r a c t

Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars,
sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze
event caused by field burning of wheat straw were characterized and compared with those in the
summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m�3) was the most
abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol
and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed
a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze
event were 2e20 times more than those in the non-hazy days. Size distribution results showed that
there was no significant change in the compound peaks in coarse mode (>2.1 mm) with respect to the
haze and non-haze samples, but a large difference in the fine fraction (<2.1 mm) was found with a sharp
increase during the hazy days mostly due to the increased emissions of wheat straw burning. Molecular
compositions of organic compounds in the fresh smoke particles fromwheat straw burning demonstrate
that sharply increased concentrations of glycerol and succinic and malic acids in the fine particles during
the haze event were mainly derived from the field burning of wheat straw, although the sources of
glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples
are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative
abundance of succinic acid to levoglucosan during the haze event suggests a significant production of
secondary organic aerosols during transport of the smoke plumes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Biomass burning emissions make a significant contribution
to particulate organic matter in the troposphere (Crutzen and
Andreae, 1990; Mayol-Bracero et al., 2002; Mazzoleni et al., 2007).
A major fraction of these organic aerosols are water-soluble, and
composed of a highly complex mixture of compounds with differ-
ence in molecular compositions and physicochemical properties
(Graham et al., 2002). These water-soluble organic compounds
(WSOC) have a significant impact on climate effects by altering the
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cloud condensation nuclei activity of aerosol (Fuzzi et al., 2007; Gao
et al., 2003; Koren et al., 2004; Martin et al., 2010); the abundant
WSOCwithin the smoke particles may play an important role in the
aqueous phase chemistry occurring within cloud droplet nucleated
smoke (Fuzzi et al., 2006; Tuckermann and Cammenga, 2004).
Moreover, some ofWSOC contained in the smoke are surfactant and
have an adverse effect on human health by increasing the solubility
of toxic pollutants (Migliaccio et al., 2009; Sorjamaa et al., 2004).

From the end of May to the mid of June is the wheat harvesting
and rice planting season in east China. In general, wheat straw is
directly burned in the same field during the period. Such a massive
biomass burning in rural area releases a huge amount of pollutants,
which further diffuse into urban area and mix with the emissions
from fossil fuel combustion, resulting in severe haze events under
favorable meteorological conditions (Chameides et al., 1999; Fang
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Table 2
Ambient concentrationsa of water-soluble organic compounds during the haze and
none-haze days, ng m�3.

June 1e5 June 5e17 Oct. 12e24

Haze (n ¼ 1) None-haze (n ¼ 3) None-haze (n ¼ 3)

I. Sugars, sugar-alcohols and vanillin
Levoglucosan 4030 204 � 129 689 � 243
Fructose 72 32 � 2.0 32 � 13
Glucose 186 49 � 27 44 � 8.3
Sucrose 68 177 � 24 31 � 19
Trehalose 20 21 � 0.7 17 � 1.9
Arabitol 195 16 � 2.4 21 � 3.6
Mannitol 123 26 � 3.9 24 � 4.2
Inositol 19 4.6 � 0.3 7.0 � 2.8
Glycerol 207 41 � 4.8 44 � 11
Vanillin 16 0.5 � 0.2 2.8 � 0.9
Subtotal 4938 571 � 125 919 � 280

II. Carboxylic acids
Glyceric acid 123 14 � 3.6 28 � 6.8
Malic acid 234 68 � 8.6 56 � 20
Succinic acid 677 50 � 5.7 87 � 22
Glutaric acid 156 23 � 5.7 40 � 11
Azelaic acid 112 38 � 7.8 94 � 29
Maleic acid 4.3 0.9 � 0.2 2.2 � 0.4
Fumaric acid 49 8.3 � 1.5 27 � 2.2
Benzoic acid 11 5.8 � 0.4 10 � 2.5
o-Phthalic acid 112 42 � 6.7 69 � 10
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et al., 2005; Wang et al., 2009). To understand the impact of the
biomass burning on urban air quality, size-resolved particles in the
urban atmosphere of Nanjing, a mega-city located in east China,
during the haze and non-haze periods were collected and charac-
terized for organic aerosols. Results on water-insoluble organics in
the samples have been published elsewhere (Wang et al., 2009).
Here, we report the difference in molecular composition and size
distribution of WSOC (i.e., sugars, sugar-alcohols and carboxylic
acids) in the haze and non-haze samples, and compare with those in
fresh smokeparticles ofwheat strawburning todiscuss their sources.

2. Experimental section

2.1. Collection of ambient aerosols

Sampling protocol was described elsewhere (Wang et al., 2009).
Briefly, an 8-stage sampler was set up on the rooftop of a three-
floor building on the campus of Nanjing University, which is located
in the urban center of Nanjing, China. Size-resolved particles were
collected onto pre-combusted (450 �C, 6 h) quartz fiber filter
(Whatman, F 90 mm) with cutoff points as 0.4, 0.7, 1.1, 2.1, 3.3, 4.7,
5.8, 9.0 mm at an airflow rate of 28.3 L min�1. One set of sample
collected on June 1e5, 2007 coincided with a severe haze episode
occurring on June 1e3, 2007, which was caused by field burning of
wheat straw in rural areas around Nanjing city (Wang et al., 2009).
Other six sets of samples were collected during the summer and
autumn non-haze periods (June 5e17 and Oct. 12e24, 2007). Each
set was continuously collected for 4 days. After sampling, the
sample was sealed in aluminum foil and stored in a freezer
under �20 �C. Field blanks were also collected by mounting filters
onto the sampler for about 10 min without sucking any air before
and after sampling, and transported into the lab with the real
samples. Meteorological conditions during the sampling periods
are shown in Table 1.

2.2. Collection of fresh smoke particles of wheat straw burning

Fresh smoke particles of wheat straw burning were collected
using the same size-segregated sampler as above at the airflow rate
of 28.3 L min�1. The sampler was fixed 1 m downwind of the
exhaust outlet of a domestic fireplace. The dried wheat straw was
burned at a rate of 9.0 kg h�1. Temperature and relative humidity
(RH) of the exhaust outlet were 20 �C and 58%, respectively,
comparable to the ambient air (14 �C, 37%). The sampling was
performed for 30 min to collect enough material. After sampling,
the smoke filters were stored together with the above ambient
samplers at �20 �C prior to analysis.

2.3. Sample extraction, derivatization and quantification

In the current study, we analyzed 72 size-segregated samples,
which are one set haze samples, six sets of non-haze samples and
one set for the fresh smoke of wheat straw burning, for various
WSOC using following procedure.

An aliquot of the filter was cut in pieces and extracted with
amixture ofmethanol and dichloromethane (v/v, 2:1), concentrated
Table 1
Meteorological conditions during the sampling period.

Date Temperature, �C Relative
humidity, %

Visibility,
km

Wind speed,
m s�1

June 1e5 22 � 1.7 79 � 4.9 2.6 � 0.9 1.0 � 0.3
June 5e17 24 � 1.6 66 � 11 7.0 � 3.0 6.0 � 1.7
Oct. 12e24 17 � 1.6 61 � 8.5 7.0 � 1.8 4.0 � 1.8
to dryness and reacted with BSTFA at 70 �C for 3 h. The derivatives
were analyzed by a HP-7890 gas chromatography coupled with
a 5975C mass spectrometer using a DB-5MS GC column (30 m �
0.25 mm � 0.25 mm). The GC temperature was programmed from
50 �C (2 min) to 120 �C at 15 �C min�1, and then to 300 �C at
5 �C min�1 with a final isothermal hold at 300 �C for 10 min. The
sample was injected in a splitless mode at 280 �C and scanned in EI
mode at 70 eV from 50 to 650 Da. Response factors of compounds
were acquired using authentic standards, which were purchased
from SigmaeAldrich Company. No target compound was found in
the field blanks. Of recovery experiment, a fewmicrogram of target
compounds dissolved in the methanol/dichloromethane mixture
was spiked onto a clean blank filter and dried under ambient
conditions, then treated in the same manner as done for real
samples (Simoneit et al., 2004c; Wang and Kawamura, 2005).
Recoveries of levoglucosan, glucose, sucrose and dicarboxylic acids
were better than 80% (Simoneit et al., 2004c; Wang et al., 2009,
2006). Oxalic acid was somewhat depleted due to volatile loss of
its trimethylsilyl (TMS) derivatization used in this study and
malonic acid in the gas chromatography co-eluted with other
unknown compounds (Wang andKawamura, 2005), thus bothwere
not included in the current study.

3. Results and discussion

3.1. Compositions of sugars, sugar-alcohols and carboxylic acids

3.1.1. Sugars, sugar-alcohols and vanillin
Table 2 shows the ambient concentrations of WSOC, which

are the sum of the compound concentration in each stage. A total
m-Phthalic acid 7.9 2.1 � 0.4 5.9 � 1.6
p-Phthalic acid 47 31 � 10 79 � 33
m-Salicylic acid 25 1.1 � 0.2 4.9 � 1.9
p-Salicylic acid 42 2.4 � 1.2 13 � 4.7
Subtotal 1599 288 � 40 506 � 124

Total 6536 859 � 163 1425 � 404
TSPb, mg m�3 318 183 � 17 226 � 66
Total/TSP, % 2.1 0.5 � 0.1 0.6 � 0.0

a Ambient concentration is the sum of compound in the 9 size-resolved stages.
b TSP: total suspended particles.
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Fig. 1. Relative concentration of compounds to TSP (total suspended particles).
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of 23 organic compounds were determined with levoglucosan
(204e4030 ng m�3) being the most abundant for all the samples
(Table 2). Concentrations of these organics (4.3e4030 ng m�3,
Table 2) in the hazy days were one order of magnitude higher those
(0.5e204 ng m�3) in the summer non-hazy days. In the haze
sample, the second highest compound was glycerol (207 ng m�3),
followed by arabitol (195 ng m�3), glucose (186 ng m�3) and
mannitol (123 ng m�3). In contrast, during the summer non-haze
period (i.e., June 5e17) sucrose (177 � 24 ng m�3) was the second
highest, being 2 times higher than in the haze period, followed by
glucose, glycerol and fructose. Compared to those in the summer
non-hazy days, the higher concentration of levoglucosan (689 �
243 ng m�3, Table 2) during the autumn non-haze period indicates
that the samples were also influenced by biomass burning emis-
sions. However, sucrose decreased in the autumnwith other sugars
being comparable to those in the summer non-haze time. Sucrose is
photosynthesized in leaves of plant, and accumulates in the root
cells (Jaeger et al., 1999). Farmland tilling after harvesting wheat
causes an enhanced exposure of soil containing wheat root to the
air, thus resulting in a sharply increased sucrose during the summer
non-haze period. In addition to the sugars and sugar-alcohols,
vanillin (16 ng m�3, Table 2) was also much more abundant during
the hazy days. Vanillin is a pyrolysis product of lignin-containing
materials (Simoneit, 2002), therefore, its sharply increased
concentration during the event can be attributed to emissions from
the wheat straw burning.

To further investigate seasonal variations in sources of the
WSOC above, relative abundances of the target compounds in
ambient particles (i.e., total suspended particles, TSP) are plotted in
Fig. 1. Compared with that in the haze event, relative concentration
of sucrose in the summer non-haze particles was much more
enriched (Fig. 1a). Moreover, relative abundances of all primary
sugars and sugar-alcohols were higher in the summer non-haze
time than in the autumn non-haze time (Fig. 1a). Sugars and sugar-
alcohols are the major form of photosynthetically assimilated
carbon in the biosphere, and their sources are numerous and
include microorganism, plants and animals (Bieleski, 1995;
Medeiros et al., 2006). The more abundant of sugars and sugar-
alcohols in the summer non-event samples are in agreement with
the seasonal variations of saccharide aerosols in Maine (Medeiros
et al., 2006) and Texas (Jia et al., 2010) USA, which showed an
increase in concentrations of saccharides as growing season pro-
gressed and a decrease as it ended, and largely due to more
significant biogenic activity in the warm season (Garg et al., 2002;
Medeiros et al., 2006). The higher proportion of vanillin in Oct.
relative to June shown in Fig. 1a probably suggests other woody
material combustion in autumn.

3.1.2. Carboxylic acids
Biomass burning emissions are enriched in not only sugars

and sugar-alcohols but also carboxylic acids and aldehydes
(Nolte et al., 2001; Schauer et al., 1996; Simoneit, 2002). In
addition, biomass combustion produces lots of volatile organic
compounds (VOC), which can further be converted into secondary
organic aerosols (SOA) via photo-oxidation processes (Claeys
et al., 2010; Nolte et al., 2001; Schauer et al., 1996; Simoneit,
2002). In the haze samples, much higher concentrations of
carboxylic acids were found, which were 2e16 times higher than
those in the summer non-haze samples (Table 2 and Fig. 1b). In
the haze sample, succinic acid showed a highest concentration
(677 ng m�3, Table 2) among the measured carboxylic acids,
followed by malic, glutaric, glyceric, azelaic and o-phthalic acids.
On contrast, malic acid (68 � 8.6 ng m�3) was the most abundant
in the summer non-hazy days, followed by succinic, o-phthalic,
azelaic, p-phthalic and glutaric acids. The high concentrations of
succinic and malic acids indicate that wheat straw burning smoke
is enriched in low molecular weight dicarboxylic acids, which is
consistent with the results reported by Falkovich et al. (2005) for
biomass burning emissions in Rondonia, Brazil. During the
autumn non-hazy days concentration (94 � 29 ng m�3, Table 2) of
azelaic acid was the highest, followed by succinic, p-phthalic,
o-phthalic, malic and glutaric acids. Lower molecular weight
diacids such as oxalic and malonic acids may be more abundant
than succinic acid (Falkovich et al., 2005), although both were not
quantified because of the limitation of the analytical method used
in this study.

Benzoic and o-phthalic acids are not derived from biomass
burning emission but secondarily produced by photochemical
oxidation of precursors such as toluene, xylene, naphthalene and
other anthropogenic pollutants (Seinfeld and Pankow, 2003). Thus,
concentration ratio (z2, see Table 2) of the two compounds in the
haze time to the summer non-haze time were much lower than
other carboxylic acids. Salicylic acids are tracers of smoke from
gramineae combustion (Simoneit, 2002), thus their enhanced
concentrations in the haze samples can be attributable to thewheat
straw burning emissions. Aromatic acids like benzoic and phthalic
acids in an urban area are largely produced by photo-oxidation of
anthropogenic pollutants (Seinfeld and Pankow, 2003). Thus,
compared to those in the summer non-haze time, an increase in
relative abundance of these aromatic acids during the autumn
non-haze time indicates that the autumn aerosols were more aged
(Fig. 1b).
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3.2. Size distributions

To further recognize the impact of the wheat straw burning on
the urban air quality, size distributions of WSOC except for levo-
glucosan, which has been described in our previous paper (Wang
et al., 2009), during the hazy and non-hazy days are illustrated in
Figs. 2 and 3. Geometric mean diameters (GMD) of the compounds
in fine (<2.1 mm) and coarse (�2.1 mm) modes of particles are
calculated and shown in Table 3.

3.2.1. Sugars, sugar-alcohols and vanillin
During the haze period, glucose, arabitol, and glycerol showed

a bimodal size distribution with a major peak in the size range of
0.7e1.1 mm and a minor peak in the size >3.3 mm (Fig. 2aec). In
contrast, glucose and arabitol in both non-haze periods showed
a bimodal patternwith a small peak in the finemode (<2.1 mm) and
a large peak in the coarse mode (�2.1 mm) (Fig. 2a and b), while
glycerol in the two non-haze periods showed two comparable
peaks in the fine and coarse ranges (Fig. 2c). Although these sugars
and sugar-alcohols are derived from pollen, fungi, bacteria, spores
and other biota in soil and enriched in coarse particles (Simoneit
et al., 2004a), their high concentrations in fine mode during the
haze episode suggest that they should be related to biomass
burning emissions. For coarse mode of the sugars and sugar-alco-
hols, there is no significant difference in the concentration and size
distribution between the hazy and the non-hazy days. Such
a phenomenon is reasonable, because these coarse modes of
organics originate from the natural sources mentioned above
rather than biomass burning and fossil fuel combustion.

Vanillin showed a bimodal patternwith two equivalent peaks in
the fine and coarse ranges during the haze and non-haze periods
(Fig. 2d). Vanillin is a pyrolysis product of lignin and enriched in
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Fig. 2. Size distribution of sugars, sugar-alcohols and vanillin during the haze (June
1e5, refer to left y-axis) and the non-haze (June 5e17 and Oct. 12e24, refer to right
y-axis) periods.
fine particles. However, the fine mode of vanillin may evaporate
into the air due to its relatively high volatility and subsequently
condense/adsorb onto the pre-existing particles. Thus, vanillin
shifts from fine particles toward larger ones during transport from
the rural region to the urban area, resulting in a large fraction in the
coarse mode (Herner et al., 2006; Hinds, 1999; Kleeman et al.,
2008).

3.2.2. Carboxylic acids
As shown in Fig. 3, most carboxylic acids in the haze sample

displayed a unimodal size distribution, peaking at the size
0.7e1.1 mm (Fig. 3a, b and f), in contrast to azelaic (Fig. 3c) and o-
phthalic (Fig. 3e) acids, which showed a bimodal pattern with
a large peak in the fine mode (<2.1 mm) and a minor peak in the
coarse mode (�2.1 mm). During June 5e17 and Oct. 12e24
carboxylic acids except for malic acid showed a bimodal size
distribution with a large peak in the fine mode and a small/
equivalent peak in the coarse mode. Carboxylic acids are abun-
dantly found in biomass burning emitted fresh smoke, which are
pyrolysis products of plant tissue (Falkovich et al., 2005). However,
carboxylic acids in the urban atmosphere are mostly produced by
photochemical oxidation of organic precursors with ozone, OH
radical, NOx and other oxidants (Kawamura and Yasui, 2005). These
primary and secondary acids mainly stay in fine particles, but some
of them have high vapor pressure (e.g., benzoic acid) and can be
adsorbed onto coarse alkaline particles, leading to a large fraction
in the coarse mode (Fig. 3d). The coarse mode of azelaic acid can be
explained by a heterogeneous particle-phase oxidation of unsatu-
rated fatty acids in coarse mode (e.g., C18:1), which is emitted into
the air as coarse particles by wind abrasion with plant surface
(Mochida et al., 2007).

As seen in Table 3, all fine mode of WSOC showed a larger GMD
in the hazy days than in the summer and autumn non-hazy days.
One reason is that the particles emitted from biomass burning are
larger than those emitted from fossil fuel combustion (Yang et al.,
2006). Another potential reason is an enhanced hygroscopic
growth of the airborne particles under relatively higher humidity
(RH: 79 � 4.9%, Table 1) during the event, because biomass burning
derived particles are highly water-soluble compared with fossil fuel
derived particles (Reid et al., 2005). In addition, the increased
concentration of fine particles during the event may also be
responsible for the larger GMDs because coagulation effect is
a function of particle concentrations (Herner et al., 2006).

3.3. Comparison of the haze samples with fresh smoke
aerosols of wheat straw burning

Fresh smoke samples collected by burning wheat straw in
a fireplace are found to be enriched in levoglucosan, methox-
yphenol, glycerol, and acetic, malic and succinic acids with negli-
gible amount of glucose, arabitol and mannitol (Fig. 4). Glucose,
arabitol and mannitol in the atmosphere are mostly derived from
ablation of the phyllosphere off fresh leaf surfaces, pollen,
spores, fungi and other biota in soil and exist in coarse particles
(Medeiros et al., 2006; Simoneit et al., 2004b). Therefore the
abundant presence of glucose, arabitol and mannitol in particles
with a diameter <1 mm during the haze event should have other
origins. Table 4 compares the relative abundance of major WSOC in
the wheat straw smoke particles with those in the haze aerosols.
Levoglucosan-normalized concentrations of fine mode of succinic
acid and glucose in the haze samples are much higher than those in
the fresh smoke particles. Fossil fuel emissions in the urban area
can photochemically produce succinic acid (Kawamura and Yasui,
2005), and thus increase its relative abundance in the aged haze
samples. As shown in Table 4, malic acid is much more abundant
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Table 3
Geometric mean diameters (GMD, mm)a of neutral and acidic water-soluble organics in the fine (<2.1 mm) and coarse (�2.1 mm) modes of particles collected during the haze
and non-haze periods.

June 1e5 (n ¼ 1) June 5e17 (n ¼ 3) Oct. 12e24 (n ¼ 3)

Haze Non-haze Non-haze

Fine Coarse Fine Coarse Fine Coarse

I. Sugars, sugar-alcohols and vanillin
Levoglucosan 0.86 3.42 0.79 � 0.09 3.79 � 0.19 0.76 � 0.03 3.50 � 0.04
Fructose 0.79 5.12 0.67 � 0.06 5.59 � 0.02 0.71 � 0.04 5.02 � 0.19
Glucose 0.87 4.85 0.77 � 0.15 4.88 � 0.15 0.74 � 0.08 4.81 � 0.13
Sucrose 0.82 5.99 0.68 � 0.08 6.83 � 0.14 0.84 � 0.04 5.20 � 0.17
Trehalose 0.92 5.30 NDb 5.47 � 0.12 1.30 � 0.49 5.20 � 0.16
Arabitol 0.86 5.39 0.73 � 0.14 5.26 � 0.11 0.79 � 0.04 5.15 � 0.20
Mannitol 0.83 5.77 0.70 � 0.17 5.38 � 0.10 0.77 � 0.04 5.32 � 0.12
Inositol 0.81 4.71 0.62 � 0.07 5.53 � 0.06 0.70 � 0.02 4.68 � 0.08
Glycerol 0.85 4.20 0.63 � 0.09 4.58 � 0.63 0.61 � 0.15 4.76 � 0.15
Vanillin 0.78 4.51 0.69 � 0.05 4.51 � 0.13 0.74 � 0.11 4.24 � 0.16

II. Carboxylic acids
Glyceric acid 0.91 3.72 0.74 � 0.07 4.45 � 0.29 0.71 � 0.02 4.03 � 0.11
Malic acid 0.91 3.30 0.77 � 0.09 4.29 � 0.10 0.68 � 0.05 4.04 � 0.20
Succinic acid 0.95 3.76 0.85 � 0.08 4.83 � 0.13 0.82 � 0.06 4.20 � 0.13
Glutaric acid 0.96 3.66 0.80 � 0.10 4.90 � 0.14 0.81 � 0.08 4.32 � 0.07
Azelaic acid 0.78 4.30 0.67 � 0.08 4.56 � 0.30 0.77 � 0.13 4.03 � 0.08
Maleic acid 0.90 3.95 0.69 � 0.09 4.15 � 0.20 0.79 � 0.12 3.72 � 0.26
Fumaric acid 0.91 4.32 0.72 � 0.09 4.40 � 0.20 0.77 � 0.11 4.56 � 0.43
Benzoic acid 0.88 NDb 0.66 � 0.07 4.70 � 0.09 0.67 � 0.03 4.49 � 0.08
o-Phthalic acid 0.85 3.91 0.67 � 0.04 4.23 � 0.25 0.69 � 0.03 3.91 � 0.25
m-Phthalic acid 0.83 3.76 0.67 � 0.06 4.43 � 0.15 0.69 � 0.05 3.97 � 0.13
p-Phthalic acid 0.81 3.53 0.79 � 0.01 3.79 � 0.16 0.80 � 0.04 3.58 � 0.19
m-Salicylic acid 0.88 3.68 0.88 � 0.31 4.74 � 0.20 0.79 � 0.11 4.05 � 0.02
p-Salicylic acid 0.85 3.93 0.65 � 0.03 4.63 � 0.15 0.78 � 0.11 4.11 � 0.08

a GMD: logGMD ¼ (
P

CilogDpi)/
P

Ci, where Ci is the concentration of compound in size i and Dpi is the geometric mean particle diameter collected on stage i (Hinds, 1999).
b ND: not detected.
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Fig. 4. GCeMS data for a total extract (TMS derivatized) of fresh smoke particles of wheat straw burning (Particle size 0.7e1.1 mm).

Table 4
Abundance of major species normalized by levoglucosan in fine (<2.1 mm) and
coarse (�2.1 mm) modes of fresh smoke particles of wheat straw burning and urban
haze aerosols (%).

Fresh smoke particles Urban haze aerosols

Fine Coarse Fine Coarse

Glucose 0.9 0.8 3.7 28
Glycerol 29 26 4.6 19
Malic acid 105 161 5.8 5
Succinic acid 9.1 17 16 36
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than succinic acid in the smoke particles but much less abundant
than succinic acid in the haze samples. Both acids showed
comparable concentrations in the urban air during the summer
non-hazy period (Table 2), thus the increased succinic acid in the
haze samples further suggest that during transport succinic acid is
preferably formed via oxidation of precursors in the biomass
burning smoke and/or more chemically stable than malic acid.
In the current stage, we do not know the specific reason why
glucose in the fine mode of haze aerosols is so abundant compared
to those in the non-haze samples, since glucose and related sugar-
alcohols in the fresh smoke samples are negligible. Abundant
presence of glucose and arabitol in fine particles have also been
found in many other locations in the world (Carvalho et al., 2003;
Ion et al., 2005; Kourtchev et al., 2008; Yttri et al., 2007), which
are proposed to be produced by secondary pathways (Carvalho
et al., 2003; Pun et al., 1999) or from uncombusted biomass
materials (Medeiros et al., 2006).
4. Conclusion

Molecular compositions and size distributions of airborne
particulate sugars, sugar-alcohols and carboxylic acids in urban
area of Nanjing during the wheat straw burning of haze and non-
haze periods were characterized. During the haze event levoglu-
cosan was the dominant compound among the measured WSOC,
followed by succinic acid, malic acid, glycerol, arabitol and glucose.
In contrast, during the summer and autumn non-haze periods
levoglucosan was the most abundant, but sucrose or azelaic acid
showed a second highest concentration, followed bymalic/succinic
acid and glucose. Concentrations of the determined WSOC in the
hazy days were 2e20 times more abundant than those in the non-
hazy days. Size distribution results showed that there was no much
change in the analyte peaks of coarse particles (>2.1 mm) with
respect to the haze and non-haze samples, but a large difference in
the fine fraction was found with a sharp increase during the hazy
daysmainly due to the increased emissions of wheat straw burning.
Compared to both compounds in the fresh wheat straw burning
smoke particles more abundant succinic acid than malic acid in the
haze aerosols probably indicates that succinic acid is preferably
formed via photochemical oxidation of organic precursors during
the transport of the biomass burning emissions.
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